探讨帕金森病中叉头盒A1的表达及意义
Exploring the Expression and Significance of Fork Head Box A1 in Parkinson’s Disease
DOI: 10.12677/acm.2025.152461, PDF, HTML, XML,    科研立项经费支持
作者: 赵美丽, 卓 娜:内蒙古医科大学包头临床学院,内蒙古 包头;刘佳慧*:包头市中心医院神经内科,内蒙古 包头
关键词: 叉头盒蛋白A1帕金森中脑多巴胺FOXA1 Parkinson Midbrain Dopamine
摘要: 帕金森病(Parkinson’s disease, PD)是最常见的神经变性运动障碍,累及全球数百万成人。目前PD的病因尚未完全清楚,可能与遗传和环境因素有关,还与氧化应激、神经炎症、免疫异常等有关。目前针对PD缺乏可靠的临床诊断标志物和有效的诊断措施,现有的诊治手段不能延缓疾病的进展。叉头盒A1 (Fork Head Box A1, FOXA1)在中枢神经系统中起重要作用,其缺失可导致酪氨酸羟化酶下调,直接影响多巴胺的合成,从而导致PD,故它可能是PD的潜在治疗靶点,为此,本文将论述FOXA1在帕金森病当中的表达及其可能的致病机制,以期为该疾病的诊断和后期治疗提供借鉴。
Abstract: Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting millions of adults worldwide. At present, the etiology of PD is not fully understood, and it may be related to genetic and environmental factors, as well as oxidative stress, neuroinflammation, and immune abnormalities. At present, there is a lack of reliable clinical diagnostic markers and effective diagnostic measures for PD, and the existing diagnosis and treatment methods cannot delay the progression of the disease. Fork head box A1 (FOXA1) plays an important role in the central nervous system, and its deletion can lead to down-regulation of tyrosine hydroxylase, which directly affects the synthesis of dopamine, resulting in PD, so it may be a potential therapeutic target for PD. Therefore, this article will discuss the expression of FOXA1 in Parkinson’s disease and its possible pathogenic mechanism, in order to provide reference for the diagnosis and later treatment of this disease.
文章引用:赵美丽, 刘佳慧, 卓娜. 探讨帕金森病中叉头盒A1的表达及意义[J]. 临床医学进展, 2025, 15(2): 1191-1196. https://doi.org/10.12677/acm.2025.152461

1. 引言

帕金森病(Parkinson’s disease, PD)属于人类常见的神经退行性疾病,其主要病理特征为黑质致密部(SNc)多巴胺能神经元进行性丢失,纹状体多巴胺能神经递质缺乏从而导致运动功能障碍[1]。PD的主要临床表现为静止性震颤、运动迟缓和肌肉强直外,往往还伴有多种非运动症状如视觉障碍、幻觉、抑郁、痴呆等。PD患者的病情逐渐恶化,严重影响患者的日常生活质量和社交能力[2]。一篇文章指出,在神经退行性系统的退行性疾病中,PD是全球中老年人群中最常见的疾病,仅次于阿尔茨海默病[3]。尽管PD的确切发病机制尚不完全清楚,但已经提出了各种可能的机制,包括氧化应激、神经炎症、线粒体功能障碍和泛素蛋白酶体系统功能障碍[4]。目前,PD的主要治疗方法是增加多巴胺的浓度或直接刺激药物依赖性多巴胺受体以改善症状[5]。尽管PD患者的诊断取得了进展,但现有的治疗模式主要集中在减轻患者的痛苦和症状,对人们的健康状况几乎没有改善。因此,研究PD的发病机制和治疗非常重要。

酪氨酸羟化酶(TH)是一种单加氧酶,是一种限速酶,可催化DA合成反应的第一步。在体内,L-酪氨酸被TH催化产生左旋多巴,然后被芳香脱羧酶催化脱羧,最后形成DA。由于TH在DA合成中的重要地位,其缺失或表达减少直接影响DA的合成和分泌,从而导致PD。先前的一项研究表明,叉头盒A1可以维持多巴胺能特性,而FOXA1/2的缺失会导致TH的下调[6]。叉头盒A1 (FOXA1)通过多种机制在此过程中发挥关键作用。为了更好地了解FOXA1在帕金森病当中的作用,我们通过回顾临床、动物模型相关研究,讨论了FOXA1的结构功能及其它在帕金森病中的表达并进行综述,并根据这些发现对FOXA1的临床价值提出了展望。

2. 叉头盒的结构和功能

叉头盒(forkhead box, FOX)家族转录因子的共性是拥有叉头DNA结合域,也叫FOX结构域,因此,又称为FOXO家族。对FOXA家族的研究始于1990年,当时名为肝细胞核因子3 (HNF-3),其中HNF3α、HNF3β和HNF3γ是目前的成员[7]。随着对其结构和功能的研究,HNF3更名为叉头盒(FOX)蛋白家族的FOXA;这三个成员分别命名为FOXA1、FOXA2和FOXA3 [8]。FOXA家族的成员因具有进化上保守的DNA结合结构域,并参与调节细胞生长、分化和胚胎发生[9] [10]。FOXA因其在哺乳动物几个阶段的关键作用而受到越来越多的关注,尤其是FOXA1和FOXA2 [11]。从机制上讲,转录因子的FOXA家族通过打开染色质结构来维持增强子活性和核小体定位;因此,它们被称为先锋因子[12]-[14]。FOXA1/2调节多种器官的发育,包括肺、肝、胰腺、前列腺和肾脏。我们还发现,FOXA1/2在早期和晚期发育过程中,中脑多巴胺能神经元的产生中起关键作用,以剂量依赖性方式调节其规格和分化。FOXA1/2使用不同的辅因子在连续的前馈环中发挥作用,以调节神经元祖细胞和未成熟神经元中不同靶基因的表达。越来越多的证据表明,调节中脑多巴胺能神经元的特异性和分化的转录因子在成人大脑中保持表达。故FOXA1和FOXA2 (FOXA1/2)不仅调节器官发育,而且是神经元发育的关键决定因素[15]

3. FOXAI在神经系统发育的作用

3.1. FOXA1是中脑多巴胺能神经元发育的关键参与者

中脑多巴胺能(mDA)神经元是一类重要的神经元亚型,具有重要的功能作用。这些神经元在帕金森病患者中丢失,其特征是失去对身体运动的控制。此外,mDA神经元调节基于奖励的行为,并与精神分裂症和注意力缺陷障碍有关。目前已鉴定出调节mDA细胞分化的规范、早期和晚期的基因。其中,叉头翼螺旋转录因子FOXA1和FOXA2 (FOXA1/2)已被证明在发育的多个阶段具有必需和剂量依赖性作用。最近的研究表明,在mDA神经元分化过程中,FOXA2和Nurr1协同结合DA表型基因,例如TH和Dat (Slc6a3) [16]。此外,FOXA2与Nurr1的结合被证明会减少DA表型基因上Nurr1-CoREST-Hdac1阻遏蛋白复合物的形成,导致组蛋白H3乙酰化增加,从而促进DA表型基因启动子的开放染色质配置和转录。但FOXA2或Nurr1是否也参与Smarca1向DA表型启动子的募集,仍有待在未来的实验中确定的另一种可能性是Smarca和其他SWI/SNF因子可能促进FOXA1/2在其成熟的不同阶段与神经元的不同靶位点结合,从而通过促进这些靶标的开放染色质状态来允许基因表达。需要进一步的研究来区分这些不同的机制。总而言之,中脑多巴胺能神经元的维持是多个信号分子和转录因子(如FOXA1和FOXA2)之间协调所需的高度协调过程。剖析FOXA1转录因子参与保护mDA神经元免于退化的机制和生存信号通路可以提出新的帕金森治疗策略。故来自FOXA家族的转录因子可能成为后期帕金森病治疗策略的额外候选者。

3.2. FOXA1在丘脑底核的作用

丘脑底核(STN)是基底神经节回路的组成部分,参与控制运动[17] [18]。在这个电路中,STN最适合描述它在抑制竞争性运动程序方面的功能,否则这些运动程序会干扰所需运动的执行[19]。此外,FOXA1对于丘脑底核的发育和功能完整性至关重要,丘脑底核是参与运动控制的基底神经节回路的重要组成部分。因此,影响信号通路STN传播的病理变化与帕金森病(PD)、亨廷顿病(HD)和半球症等严重运动障碍的表现有关[20]。FOXA1/2表达是成年期中脑发育和维持多巴胺能神经元特性所必需的[21]。FOXA1/2通过在指定阶段调节不同的靶基因集来介导这一点[22]-[26]。与中脑的情况类似,STN中的FOXA1表达不仅限于发育或出生后阶段,而是持续到整个成年期。这意味着STN的正常功能持续需要FOXA1,与FOXA1在发育中的STN中的作用相比,STN的正常功能可能涉及不同的靶基因和机制。STN缺陷与运动减退和运动过度疾病有关。PD患者过度的STN活动和运动减退症状很明显,这使得STN成为PD中最常见的脑深部刺激治疗靶点[27]。条件性FOXA1敲除小鼠中STN神经元的转录组分析显示基因表达的变化让人想起神经退行性疾病中的变化[28]。研究确定一种与神经退行性变有关的转录激活因子Ppargc1a,作为FOXA1靶标。在FOXA1突变小鼠的条件模型中观察到STN神经元的FOXA1依赖性死亡证实了这些发现。最后,实验表明FOXA1缺陷型STN神经元的自发放电活动受到严重损害。综上,我们也可以认为FOXA1在帕金森疾病的发生、发展中发挥关键作用。

4. FOXA1与其他转录因子协同作用

不同的转录因子与FOXA1结合发挥不同的作用。关于PD发病机制的大量研究证实,神经炎症和氧化应激参与并促进PD的发生和进展,有研究评估了转录因子FOXA1在多巴胺神经细胞中的作用。结果表明,FOXA1过表达可能会减少细胞炎症、氧化应激和细胞凋亡。重要的是,FOXA1过表达可以增加标志物TH的表达,这意味着它可以减少多巴胺能神经元的丢失。作为一种多功能转录因子,FOXA1的生物学功能可归因于不同的下游靶标。Liang等人之前报道了FOXA1通过促进三叶草因子1 (TFF1)转录在减弱神经元氧化应激、炎症和细胞凋亡中的作用[29]。也有研究发现,PBX1表达在PD患者的黑质纹状体神经元中显著降低,为了观察FOXA1是否参与该机制,测量其表达,并确定其与PBX1的相关性,Li [30]等人通过一系列实验发现,PBX1通过FOXA1影响了PINK1/PARKIN的表达,减弱了多巴胺能神经元氧化应激和细胞凋亡,表明FOXA1和PBX1在调节多巴胺能神经元发育中的相互作用。我们先前的研究通过分析表明FOXA1在PD患者死后脑中低表达模式的数据集[31],FOXA1在帕金森病(PD)中的神经保护作用显著。研究发现,FOXA1通过结合神经纤维蛋白1 (NF1)启动子,抑制其转录并激活丝裂原活化蛋白激酶(MAPK)信号通路,从而减少多巴胺能神经元的损伤和运动障碍。此外,通过人工上调FOXA1表达可以改善小鼠模型的运动能力,并减轻脑组织损伤,这表明FOXA1在PD中的潜在治疗价值[32]。综上,FOXA1参与PD疾病的转录调控、协同多个转录因子在帕金森疾病中发挥作用,是帕金森疾病中的关键靶点。

5. 总结与展望

综上所述,目前随着对FOXA1研究的不断深入,FOXA1的功能越来越受到学者们的关注,对它的研究也不仅仅局限于癌症,在神经系统疾病的相关研究方面也显示出巨大潜力。尽管目前的研究已经表明FOXA1可能作为帕金森病治疗的靶点,但其具体的作用机制仍需进一步研究。例如,如何精确调控FOXA1的表达水平以及其与其他信号通路的交互作用,都是未来研究的重点方向。通过深入研究FOXA1转录因子的作用机制,有望为帕金森患者提供更有效的治疗方案,从而显著提高患者的生活质量。随着技术的不断进步和研究的深入,我们有理由相信FOXA1将会在帕金森病诊治领域占有一席新高地。

基金项目

内蒙古自治区科技计划项目(2022YFSH0085)。

NOTES

*通讯作者。

参考文献

[1] Wei, Z., Li, X., Li, X., Liu, Q. and Cheng, Y. (2018) Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-analysis. Frontiers in Molecular Neuroscience, 11, Article 236.
https://doi.org/10.3389/fnmol.2018.00236
[2] Armstrong, M.J. and Okun, M.S. (2020) Diagnosis and Treatment of Parkinson Disease: A Review. JAMA, 323, 548-560.
https://doi.org/10.1001/jama.2019.22360
[3] Aarsland, D., Batzu, L., Halliday, G.M., Geurtsen, G.J., Ballard, C., Ray Chaudhuri, K., et al. (2021) Parkinson Disease-Associated Cognitive Impairment. Nature Reviews Disease Primers, 7, Article No. 47.
https://doi.org/10.1038/s41572-021-00280-3
[4] Chen, X., Hu, Y., Cao, Z., Liu, Q. and Cheng, Y. (2018) Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 9, 2122.
https://doi.org/10.3389/fimmu.2018.02122
[5] De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., et al. (2016) Parkinson’s Disease: Autoimmunity and Neuroinflammation. Autoimmunity Reviews, 15, 1005-1011.
https://doi.org/10.1016/j.autrev.2016.07.022
[6] Yang, X., Zhu, Z., Ding, X., Wang, X., Cui, G., Hua, F., et al. (2018) CaMKII Inhibition Ameliorated Levodopa-Induced Dyskinesia by Downregulating Tyrosine Hydroxylase Activity in an Experimental Model of Parkinson’s Disease. Brain Research, 1687, 66-73.
https://doi.org/10.1016/j.brainres.2018.02.013
[7] Lai, E., Prezioso, V.R., Smith, E., Litvin, O., Costa, R.H. and Darnell, J.E. (1990) HNF-3A, a Hepatocyte-Enriched Transcription Factor of Novel Structure Is Regulated Transcriptionally. Genes & Development, 4, 1427-1436.
https://doi.org/10.1101/gad.4.8.1427
[8] Kaestner, K.H., Knöchel, W. and Martínez, D.E. (2000) Unified Nomenclature for the Winged Helix/Forkhead Transcription Factors. Genes & Development, 14, 142-146.
https://doi.org/10.1101/gad.14.2.142
[9] Reizel, Y., Morgan, A., Gao, L., Schug, J., Mukherjee, S., García, M.F., et al. (2021) FoxA-Dependent Demethylation of DNA Initiates Epigenetic Memory of Cellular Identity. Developmental Cell, 56, 602-612.e4.
https://doi.org/10.1016/j.devcel.2021.02.005
[10] Gao, B., Xie, W., Wu, X., Wang, L. and Guo, J. (2020) Functionally Analyzing the Important Roles of Hepatocyte Nuclear Factor 3 (FoxA) in Tumorigenesis. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1873, Article ID: 188365.
https://doi.org/10.1016/j.bbcan.2020.188365
[11] Kaestner, K.H. (2000) The Hepatocyte Nuclear Factor 3 (HNF3 or FoxA) Family in Metabolism. Trends in Endocrinology & Metabolism, 11, 281-285.
https://doi.org/10.1016/s1043-2760(00)00271-x
[12] Friedman, J.R. and Kaestner, K.H. (2006) The FoxA Family of Transcription Factors in Development and Metabolism. Cellular and Molecular Life Sciences, 63, 2317-2328.
https://doi.org/10.1007/s00018-006-6095-6
[13] Reizel, Y., Morgan, A., Gao, L., Lan, Y., Manduchi, E., Waite, E.L., et al. (2020) Collapse of the Hepatic Gene Regulatory Network in the Absence of FoxA Factors. Genes & Development, 34, 1039-1050.
https://doi.org/10.1101/gad.337691.120
[14] Heslop, J.A. and Duncan, S.A. (2020) FoxA Factors: The Chromatin Key and Doorstop Essential for Liver Development and Function. Genes & Development, 34, 1003-1004.
https://doi.org/10.1101/gad.340570.120
[15] Ferri, A.L.M., Lin, W., Mavromatakis, Y.E., Wang, J.C., Sasaki, H., Whitsett, J.A., et al. (2007) Foxa1 and Foxa2 Regulate Multiple Phases of Midbrain Dopaminergic Neuron Development in a Dosage-Dependent Manner. Development, 134, 2761-2769.
https://doi.org/10.1242/dev.000141
[16] Yi, S., He, X., Rhee, Y., Park, C., Takizawa, T., Nakashima, K., et al. (2014) Foxa2 Acts as a Co-Activator Potentiating Expression of the Nurr1-Induced DA Phenotype via Epigenetic Regulation. Development, 141, 761-772.
https://doi.org/10.1242/dev.095802
[17] Nelson, A.B. and Kreitzer, A.C. (2014) Reassessing Models of Basal Ganglia Function and Dysfunction. Annual Review of Neuroscience, 37, 117-135.
https://doi.org/10.1146/annurev-neuro-071013-013916
[18] Hamani, C. (2004) The Subthalamic Nucleus in the Context of Movement Disorders. Brain, 127, 4-20.
https://doi.org/10.1093/brain/awh029
[19] Mink, J.W. (2003) The Basal Ganglia and Involuntary Movements: Impaired Inhibition of Competing Motor Patterns. Archives of Neurology, 60, 1365-1368.
https://doi.org/10.1001/archneur.60.10.1365
[20] Guridi, J. and Obeso, J.A. (2001) The Subthalamic Nucleus, Hemiballismus and Parkinson’s Disease: Reappraisal of a Neurosurgical Dogma. Brain, 124, 5-19.
https://doi.org/10.1093/brain/124.1.5
[21] Rossant, J. (2014) Genes for Regeneration. eLife, 3, Article e02517.
https://doi.org/10.7554/elife.02517
[22] Metzakopian, E., Bouhali, K., Alvarez-Saavedra, M., Whitsett, J.A., Picketts, D.J. and Ang, S. (2015) Genome-Wide Characterisation of Foxa1 Binding Sites Reveals Several Mechanisms for Regulating Neuronal Differentiation in Midbrain Dopamine Cells. Development, 142, 1315-1324.
https://doi.org/10.1242/dev.115808
[23] Lin, W., Metzakopian, E., Mavromatakis, Y.E., Gao, N., Balaskas, N., Sasaki, H., et al. (2009) Foxa1 and Foxa2 Function Both Upstream of and Cooperatively with Lmx1a and Lmx1b in a Feedforward Loop Promoting Mesodiencephalic Dopaminergic Neuron Development. Developmental Biology, 333, 386-396.
https://doi.org/10.1016/j.ydbio.2009.07.006
[24] Pristerà, A., Lin, W., Kaufmann, A., Brimblecombe, K.R., Threlfell, S., Dodson, P.D., et al. (2015) Transcription Factors FOXA1 and FOXA2 Maintain Dopaminergic Neuronal Properties and Control Feeding Behavior in Adult Mice. Proceedings of the National Academy of Sciences of the United States of America, 112, E4929-E4938.
https://doi.org/10.1073/pnas.1503911112
[25] Stott, S.R.W., Metzakopian, E., Lin, W., Kaestner, K.H., Hen, R. and Ang, S. (2013) Foxa1 and Foxa2 Are Required for the Maintenance of Dopaminergic Properties in Ventral Midbrain Neurons at Late Embryonic Stages. The Journal of Neuroscience, 33, 8022-8034.
https://doi.org/10.1523/jneurosci.4774-12.2013
[26] Domanskyi, A., Alter, H., Vogt, M.A., Gass, P. and Vinnikov, I.A. (2014) Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. Frontiers in Cellular Neuroscience, 8, Article 275.
https://doi.org/10.3389/fncel.2014.00275
[27] Benabid, A.L., Chabardes, S., Mitrofanis, J. and Pollak, P. (2009) Deep Brain Stimulation of the Subthalamic Nucleus for the Treatment of Parkinson’s Disease. The Lancet Neurology, 8, 67-81.
https://doi.org/10.1016/s1474-4422(08)70291-6
[28] Gasser, E., Johannssen, H.C., Rülicke, T., Zeilhofer, H.U. and Stoffel, M. (2016) Foxa1 Is Essential for Development and Functional Integrity of the Subthalamic Nucleus. Scientific Reports, 6, Article No. 38611.
https://doi.org/10.1038/srep38611
[29] Liang, T., Zhao, P., Zhang, X., Han, X., Hong, B., Kong, L., et al. (2022) FOXA1 Transcription Activates TFF1 to Reduce 6-OHDA-Induced Dopaminergic Neuron Damage. Experimental and Therapeutic Medicine, 23, Article No. 372.
https://doi.org/10.3892/etm.2022.11299
[30] Li, B., An, D. and Zhu, S. (2022) PBX1 Attenuates 6-Ohda-Induced Oxidative Stress and Apoptosis and Affects PINK1/PARKIN Expression in Dopaminergic Neurons via FOXA1. Cytotechnology, 74, 217-229.
https://doi.org/10.1007/s10616-021-00518-8
[31] Verma, A., Kommaddi, R.P., Gnanabharathi, B., Hirsch, E.C. and Ravindranath, V. (2023) Genes Critical for Development and Differentiation of Dopaminergic Neurons Are Downregulated in Parkinson’s Disease. Journal of Neural Transmission, 130, 495-512.
https://doi.org/10.1007/s00702-023-02604-x
[32] Rai, S.N., Dilnashin, H., Birla, H., Singh, S.S., Zahra, W., Rathore, A.S., et al. (2019) The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotoxicity Research, 35, 775-795.
https://doi.org/10.1007/s12640-019-0003-y