[1]
|
Wei, Z., Li, X., Li, X., Liu, Q. and Cheng, Y. (2018) Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-analysis. Frontiers in Molecular Neuroscience, 11, Article 236. https://doi.org/10.3389/fnmol.2018.00236
|
[2]
|
Armstrong, M.J. and Okun, M.S. (2020) Diagnosis and Treatment of Parkinson Disease: A Review. JAMA, 323, 548-560. https://doi.org/10.1001/jama.2019.22360
|
[3]
|
Aarsland, D., Batzu, L., Halliday, G.M., Geurtsen, G.J., Ballard, C., Ray Chaudhuri, K., et al. (2021) Parkinson Disease-Associated Cognitive Impairment. Nature Reviews Disease Primers, 7, Article No. 47. https://doi.org/10.1038/s41572-021-00280-3
|
[4]
|
Chen, X., Hu, Y., Cao, Z., Liu, Q. and Cheng, Y. (2018) Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 9, 2122. https://doi.org/10.3389/fimmu.2018.02122
|
[5]
|
De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., et al. (2016) Parkinson’s Disease: Autoimmunity and Neuroinflammation. Autoimmunity Reviews, 15, 1005-1011. https://doi.org/10.1016/j.autrev.2016.07.022
|
[6]
|
Yang, X., Zhu, Z., Ding, X., Wang, X., Cui, G., Hua, F., et al. (2018) CaMKII Inhibition Ameliorated Levodopa-Induced Dyskinesia by Downregulating Tyrosine Hydroxylase Activity in an Experimental Model of Parkinson’s Disease. Brain Research, 1687, 66-73. https://doi.org/10.1016/j.brainres.2018.02.013
|
[7]
|
Lai, E., Prezioso, V.R., Smith, E., Litvin, O., Costa, R.H. and Darnell, J.E. (1990) HNF-3A, a Hepatocyte-Enriched Transcription Factor of Novel Structure Is Regulated Transcriptionally. Genes & Development, 4, 1427-1436. https://doi.org/10.1101/gad.4.8.1427
|
[8]
|
Kaestner, K.H., Knöchel, W. and Martínez, D.E. (2000) Unified Nomenclature for the Winged Helix/Forkhead Transcription Factors. Genes & Development, 14, 142-146. https://doi.org/10.1101/gad.14.2.142
|
[9]
|
Reizel, Y., Morgan, A., Gao, L., Schug, J., Mukherjee, S., García, M.F., et al. (2021) FoxA-Dependent Demethylation of DNA Initiates Epigenetic Memory of Cellular Identity. Developmental Cell, 56, 602-612.e4. https://doi.org/10.1016/j.devcel.2021.02.005
|
[10]
|
Gao, B., Xie, W., Wu, X., Wang, L. and Guo, J. (2020) Functionally Analyzing the Important Roles of Hepatocyte Nuclear Factor 3 (FoxA) in Tumorigenesis. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1873, Article ID: 188365. https://doi.org/10.1016/j.bbcan.2020.188365
|
[11]
|
Kaestner, K.H. (2000) The Hepatocyte Nuclear Factor 3 (HNF3 or FoxA) Family in Metabolism. Trends in Endocrinology & Metabolism, 11, 281-285. https://doi.org/10.1016/s1043-2760(00)00271-x
|
[12]
|
Friedman, J.R. and Kaestner, K.H. (2006) The FoxA Family of Transcription Factors in Development and Metabolism. Cellular and Molecular Life Sciences, 63, 2317-2328. https://doi.org/10.1007/s00018-006-6095-6
|
[13]
|
Reizel, Y., Morgan, A., Gao, L., Lan, Y., Manduchi, E., Waite, E.L., et al. (2020) Collapse of the Hepatic Gene Regulatory Network in the Absence of FoxA Factors. Genes & Development, 34, 1039-1050. https://doi.org/10.1101/gad.337691.120
|
[14]
|
Heslop, J.A. and Duncan, S.A. (2020) FoxA Factors: The Chromatin Key and Doorstop Essential for Liver Development and Function. Genes & Development, 34, 1003-1004. https://doi.org/10.1101/gad.340570.120
|
[15]
|
Ferri, A.L.M., Lin, W., Mavromatakis, Y.E., Wang, J.C., Sasaki, H., Whitsett, J.A., et al. (2007) Foxa1 and Foxa2 Regulate Multiple Phases of Midbrain Dopaminergic Neuron Development in a Dosage-Dependent Manner. Development, 134, 2761-2769. https://doi.org/10.1242/dev.000141
|
[16]
|
Yi, S., He, X., Rhee, Y., Park, C., Takizawa, T., Nakashima, K., et al. (2014) Foxa2 Acts as a Co-Activator Potentiating Expression of the Nurr1-Induced DA Phenotype via Epigenetic Regulation. Development, 141, 761-772. https://doi.org/10.1242/dev.095802
|
[17]
|
Nelson, A.B. and Kreitzer, A.C. (2014) Reassessing Models of Basal Ganglia Function and Dysfunction. Annual Review of Neuroscience, 37, 117-135. https://doi.org/10.1146/annurev-neuro-071013-013916
|
[18]
|
Hamani, C. (2004) The Subthalamic Nucleus in the Context of Movement Disorders. Brain, 127, 4-20. https://doi.org/10.1093/brain/awh029
|
[19]
|
Mink, J.W. (2003) The Basal Ganglia and Involuntary Movements: Impaired Inhibition of Competing Motor Patterns. Archives of Neurology, 60, 1365-1368. https://doi.org/10.1001/archneur.60.10.1365
|
[20]
|
Guridi, J. and Obeso, J.A. (2001) The Subthalamic Nucleus, Hemiballismus and Parkinson’s Disease: Reappraisal of a Neurosurgical Dogma. Brain, 124, 5-19. https://doi.org/10.1093/brain/124.1.5
|
[21]
|
Rossant, J. (2014) Genes for Regeneration. eLife, 3, Article e02517. https://doi.org/10.7554/elife.02517
|
[22]
|
Metzakopian, E., Bouhali, K., Alvarez-Saavedra, M., Whitsett, J.A., Picketts, D.J. and Ang, S. (2015) Genome-Wide Characterisation of Foxa1 Binding Sites Reveals Several Mechanisms for Regulating Neuronal Differentiation in Midbrain Dopamine Cells. Development, 142, 1315-1324. https://doi.org/10.1242/dev.115808
|
[23]
|
Lin, W., Metzakopian, E., Mavromatakis, Y.E., Gao, N., Balaskas, N., Sasaki, H., et al. (2009) Foxa1 and Foxa2 Function Both Upstream of and Cooperatively with Lmx1a and Lmx1b in a Feedforward Loop Promoting Mesodiencephalic Dopaminergic Neuron Development. Developmental Biology, 333, 386-396. https://doi.org/10.1016/j.ydbio.2009.07.006
|
[24]
|
Pristerà, A., Lin, W., Kaufmann, A., Brimblecombe, K.R., Threlfell, S., Dodson, P.D., et al. (2015) Transcription Factors FOXA1 and FOXA2 Maintain Dopaminergic Neuronal Properties and Control Feeding Behavior in Adult Mice. Proceedings of the National Academy of Sciences of the United States of America, 112, E4929-E4938. https://doi.org/10.1073/pnas.1503911112
|
[25]
|
Stott, S.R.W., Metzakopian, E., Lin, W., Kaestner, K.H., Hen, R. and Ang, S. (2013) Foxa1 and Foxa2 Are Required for the Maintenance of Dopaminergic Properties in Ventral Midbrain Neurons at Late Embryonic Stages. The Journal of Neuroscience, 33, 8022-8034. https://doi.org/10.1523/jneurosci.4774-12.2013
|
[26]
|
Domanskyi, A., Alter, H., Vogt, M.A., Gass, P. and Vinnikov, I.A. (2014) Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. Frontiers in Cellular Neuroscience, 8, Article 275. https://doi.org/10.3389/fncel.2014.00275
|
[27]
|
Benabid, A.L., Chabardes, S., Mitrofanis, J. and Pollak, P. (2009) Deep Brain Stimulation of the Subthalamic Nucleus for the Treatment of Parkinson’s Disease. The Lancet Neurology, 8, 67-81. https://doi.org/10.1016/s1474-4422(08)70291-6
|
[28]
|
Gasser, E., Johannssen, H.C., Rülicke, T., Zeilhofer, H.U. and Stoffel, M. (2016) Foxa1 Is Essential for Development and Functional Integrity of the Subthalamic Nucleus. Scientific Reports, 6, Article No. 38611. https://doi.org/10.1038/srep38611
|
[29]
|
Liang, T., Zhao, P., Zhang, X., Han, X., Hong, B., Kong, L., et al. (2022) FOXA1 Transcription Activates TFF1 to Reduce 6-OHDA-Induced Dopaminergic Neuron Damage. Experimental and Therapeutic Medicine, 23, Article No. 372. https://doi.org/10.3892/etm.2022.11299
|
[30]
|
Li, B., An, D. and Zhu, S. (2022) PBX1 Attenuates 6-Ohda-Induced Oxidative Stress and Apoptosis and Affects PINK1/PARKIN Expression in Dopaminergic Neurons via FOXA1. Cytotechnology, 74, 217-229. https://doi.org/10.1007/s10616-021-00518-8
|
[31]
|
Verma, A., Kommaddi, R.P., Gnanabharathi, B., Hirsch, E.C. and Ravindranath, V. (2023) Genes Critical for Development and Differentiation of Dopaminergic Neurons Are Downregulated in Parkinson’s Disease. Journal of Neural Transmission, 130, 495-512. https://doi.org/10.1007/s00702-023-02604-x
|
[32]
|
Rai, S.N., Dilnashin, H., Birla, H., Singh, S.S., Zahra, W., Rathore, A.S., et al. (2019) The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotoxicity Research, 35, 775-795. https://doi.org/10.1007/s12640-019-0003-y
|