自噬在炎症性肠病免疫稳态的研究进展
Research Progress of Autophagy in Immune Homeostasis in Inflammatory Bowel Disease
DOI: 10.12677/acm.2025.153631, PDF, HTML, XML,   
作者: 彭冰霞, 王晓娟:赣南医科大学第一临床医学院,江西 赣州;袁 建*:广东省人民医院赣州医院消化内科,江西 赣州
关键词: 自噬免疫稳态炎症性肠病克罗恩病溃疡性结肠炎Autophagy Immune Homeostasis Inflammatory Bowel Disease Crohn’s Disease Ulcerative Colitis
摘要: 近年来,越来越多的研究表明,自噬在调节免疫反应和炎症中发挥着重要作用。肠道作为机体重要的免疫器官,其内部的免疫细胞在自噬过程中可能对肠道炎症的发生与发展产生深远的影响。随着自噬在IBD的研究深入,发现肠道免疫细胞的异常自噬,可显著削弱肠道的免疫平衡和黏膜屏障的完整性,后者是IBD出现病情进展的重要环节。本文将系统地回顾自噬与肠道炎症及肠道免疫细胞之间的相互关系,以期为相关疾病的防治提供新的思路和方向。
Abstract: In recent years, more and more studies have shown that autophagy plays an important role in regulating immune response and inflammation. Intestinal tract is an important immune organ of the body, and its internal immune cells may have a profound impact on the occurrence and development of intestinal inflammation in the process of autophagy. With the in-depth study of autophagy in IBD, it has been found that abnormal autophagy of intestinal immune cells can significantly weaken the immune balance of the intestine and the integrity of the mucosal barrier, which is an important part of the progression of IBD. This article will systematically review the relationship between autophagy, intestinal inflammation and intestinal immune cells, in order to provide new ideas and directions for the prevention and treatment of related diseases.
文章引用:彭冰霞, 王晓娟, 袁建. 自噬在炎症性肠病免疫稳态的研究进展[J]. 临床医学进展, 2025, 15(3): 415-421. https://doi.org/10.12677/acm.2025.153631

1. 引言

炎症性肠病(inflammatory bowel disease, IBD)是由遗传、环境、感染和免疫等因素综合作用所引起的累及消化道及肠外器官的慢性复发性炎症,是一种自身免疫性疾病。主要包括溃疡性结肠炎(ulcerative colitis, UC)及克罗恩病(Crohn’s disease, CD)两个亚型。自噬是在感染、线粒体损伤或ER应激后维持细胞稳态所需的一种重要的细胞循环途径。自噬缺陷已被证明会导致病理性炎症,GWAS已将自噬中的两个关键基因ATG16L1和IRGM与CD联系起来[1] [2]。研究表明,线粒体自噬损伤可通过代谢编程影响免疫细胞的表型和功能,从而导致肠道病理。在促炎细胞如活化的单核细胞和活化的T细胞中,细胞能量是通过增加糖酵解产生的,而在T调节细胞和抗炎M2巨噬细胞中,能量是通过增加线粒体依赖性机制和脂肪酸氧化途径产生的。因此,线粒体损伤的情况可以增加和永久促进炎症状态与抗炎免疫细胞激活的缺乏[3]。对线粒体自噬机制及其在疾病中的障碍进行研究有助于对炎症性肠病提供更透彻的了解和潜在的疗法。

2. 自噬概述

自噬的主要形态学特征是形成称为自噬体的膜细胞器。其中,Atg6/Beclin 1、Atg1/Ulk1和Atg8/LC3是关键的调节因子,驱动自噬隔离膜(吞噬体)的胞浆形成。吞噬体通常与内质网(ER)的磷脂酰肌醇3-磷酸(PI3P)阳性结构域(称为omegasomes1)短暂相连并衍生。其他细胞室如高尔基体、线粒体和质膜衍生的内吞细胞器也起作用[4]

细胞调节自噬的一种方法是通过mTOR (抑制自噬)和AMPK (激活自噬)进行代谢调节。MTOR是一种调节细胞生长和存活的蛋白激酶,包括MTORC1和MTORC2。MTORC2信号传导促进细胞增殖和存活,MTORC1正向调节蛋白质、脂质和核苷酸的合成[5],是自噬起始的关键调节因子[6]。AMPK是MTOR通路[7]的上游成员,AMPK在营养胁迫条件下抑制MTORC1,因此,AMPK通过抑制MTORC1正向调节自噬的起始。

3. 自噬与肠道免疫

3.1. 自噬与肠道先天性免疫

在肠道的先天免疫反应中,自噬的作用主要体现在对病原体的识别和清除上。自噬通过选择性地捕获细胞内的病原体,并将其转运到溶酶体进行降解,从而有效地消除感染[8]。例如,研究发现自噬相关基因(ATG)在肠道内的表达水平与肠道微生物的平衡密切相关,能够影响肠道的免疫状态和炎症反应[9]。基于遗传分析,自噬相关基因NOD2、Atg16l1和XIAP的改变可能通过影响自噬导致CD的发生[10]。此外,自噬还通过调节细胞因子的产生和免疫细胞的活化,进一步增强了肠道的免疫防御能力[11]。研究表明,自噬通过促进细胞内抗原的处理和呈递,提高了免疫细胞对病原体的识别能力,从而增强了免疫应答的特异性和有效性[12]。这种调节作用使得自噬成为肠道免疫反应中的一个重要环节,能够有效协调先天免疫和适应性免疫之间的相互作用。

3.2. 自噬与肠道适应性免疫

自噬可以增加细胞质抗原的MHC II类呈递,包括自身或病毒抗原,并促进抗原的瓜氨酸化。LAP可以增强颗粒抗原的加工,用于MHC II类呈递。NOD2增强自噬抗原呈递。自噬可能通过与蛋白酶体竞争底物,或通过支持非常规的MHC I类呈递,直接或间接地影响MHC I类呈递。此外,自噬影响造血干细胞(hematopoietic stem cells, HSCs)的自我更新、B1细胞发育、浆细胞存活和IgA分泌。自噬在T细胞受体(TCR)激活后影响T细胞存活,并破坏免疫突触的稳定性。它还通过释放白细胞介素-1α (IL-1α)和IL-1β来控制先天免疫细胞(如巨噬细胞)的信号传导,从而影响T细胞向T辅助细胞的极化。自噬还通过去除线粒体和内质网(ER)影响胸腺中幼稚T细胞库的选择和成熟T细胞的存活和功能,从而确保免疫稳态。

4. 自噬与肠道免疫细胞

4.1. 自噬与T细胞

T细胞来源于骨髓中的淋巴样祖细胞,在胸腺中完成T细胞的发育。在胸腺T细胞的发育过程中,先要经历阳性选择获得MHC限制性,再经历阴性选择获得自身免疫耐受性[13]。在此过程中,机体大量表达组织限制性抗原,这些内源性抗原会通过非经典的抗原交叉提呈,通过MHC II类分子途径提呈给CD4+ T细胞进行阴性选择,这一过程需要包含有胞内蛋白的自噬体与MHC II类小室融合,这种选择性介导膜融合的机制尚不清晰[14]。然而,自噬缺陷就会导致非经典的抗原交叉提呈受阻,自身反应性T细胞无法清除,从而产生自身免疫性疾病。

在成熟T细胞离开胸腺后,自噬仍然在T细胞分化和稳态维持中起到重要作用。自噬参与调控CD4+ T细胞分化,但对于各类型的CD4+效应T的作用不同。有体外实验表明,CD4+ T细胞中条件性敲除自噬相关基因Becn1会抑制其向Th1和Th2细胞分化,促使其向Th17细胞分化[15]。另一个研究表明,自噬相关基因Atg5缺陷不影响Th1和Th2细胞分化,但会显著促进Th9细胞分化[16]。研究发现,抑制CD4+ T细胞分化为Th1/Th17细胞可以改善肠道粘膜炎症[17]

自噬缺陷会影响Treg细胞在体外发育,但其具体作用仍有一定争议[18]。体内实验表明,自噬缺陷的Treg细胞会出现线粒体和内质网等细胞器累积,从而促使代谢表型转变为糖酵解。Treg细胞在代谢上不同于其他效应T细胞,它的能量需求主要依赖于OXPHOS而不是糖酵解[19]。自噬缺陷会通过激活mTORC1和MYC信号,导致Treg细胞代谢转换为糖酵解,使FOXP3表达不稳定,Treg细胞更易发生凋亡[20]。记忆T细胞与Treg细胞类似,也主要通过FFAs的OXPHOS供能。因此,自噬缺陷会通过线粒体缺陷、活性氧累积、脂代谢受损等,影响记忆T细胞的稳态维持[21] [22]

肠道上皮细胞(IEC)中线粒体自噬水平的升高触发溶酶体膜通透性,随后将蛋白酶释放到细胞质中通过树突状细胞增强了MHC1类抗原呈递和CD8+ T细胞的活化[23]。记忆性CD8+ T细胞形成过程中同时也会诱导自噬途径活化,而自噬异常条件下记忆性CD8+ T细胞形成也会发生障碍。线粒体自噬途径可以促进CD8+记忆性T细胞存活,在记忆性T细胞形成过程中,Parkin-PINK1级联信号通路介导的泛素化途径和BNIP3和NIX介导的受体依赖途径都参与了[24]

4.2. 自噬与中性粒细胞

中性粒细胞是在骨髓中由粒细胞–单核细胞前体(Granulocyte-monocyte progenitors, GMPs)发育而来,在IBD发病过程中起着重要作用。研究发现,在IBD炎症粘膜肠黏膜组织内,大量聚集的中性粒细胞浸润穿透上皮屏障加重肠黏膜炎症免疫反应,引起菌群失调,加剧粘膜组织损伤,另一方面,激活的中性粒细胞也能有效清除IBD患者肠道中入侵的外源性病原微生物[25]。而自噬在中性粒细胞的发育成熟过程中扮演重要角色。研究发现,在GMPs中条件性敲除自噬相关基因Atg7会导致中性粒细胞分化失败,从而积累大量功能缺陷的未成熟GMPs [26]。自噬缺陷的GMPs会无法通过脂噬释放足够的游离脂肪酸进入线粒体的TCA循环发生OXPHOS,也就无法为细胞分化提供足够的能量。补充FFAs能够重新恢复Atg7敲除GMPs的能量代谢和分化。粒细胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)是促使GMPs分化为中性粒细胞的关键细胞因子,有研究表明,G-CSF能在人和鼠的中性粒细胞中激活自噬[27]。然而,在中性粒细胞发育后期,条件性敲除自噬相关基因Atg5会得到相反的表型,敲除Atg5会导致成熟中性粒细胞数目增多[28]。这说明在中性粒细胞的不同发育阶段,自噬可能发挥着不同的调控作用。

4.3. 自噬与巨噬细胞

巨噬细胞是专职的吞噬细胞和抗原提呈细胞,由单核细胞分化而来。有研究表明,自噬相关基因BECN1参与CASPASE依赖的单核–巨噬细胞分化途径[29]。巨噬细胞遍布肠壁,其中固有层巨噬细胞的数量最为丰富,根据不同的激活状态将其分为两种不同的表型:促炎状态M1型巨噬细胞和抗炎状态的M2型巨噬细胞[30]。Zareie等[31]的研究在UC患者中发现处于结肠粘膜固有层中的M1型巨噬细胞具有高度敏感性,对细菌及其产物的刺激反应强烈,可分泌大量的促炎细胞因子和趋化因子,加重肠道炎症反应。Smythies等[32]的研究发现,结肠粘膜固有层中的M2型巨噬细胞对细菌的刺激反应较弱,但仍具有高度的吞噬能力和很强的杀菌性。正常人体结肠组织固有层中持续存在M2型巨噬细胞[33]。而自噬参与了这两种亚型的巨噬细胞分化过程。研究用Atg7敲除小鼠验证了自噬在单核细胞分化为M2型巨噬细胞中的调控作用[34],这种分化通过CSF-1刺激。研究表明,GM- CSF依赖性单核细胞向巨噬细胞的分化也是一个自噬过程[29]。靶向自噬机制可能是通过阻断CSF-1介导的单核细胞分化来阻止巨噬细胞。M1、M2型巨噬细胞在分化过程中有不同的代谢需求,M2型巨噬细胞在分化过程中需要大量FFAs和线粒体OXPHOS,而M1型巨噬细胞更依赖于糖酵解,因此自噬在其分化过程的作用可能也不尽相同[35]。在LPS诱导的M1巨噬细胞极化模型中,通过抑制PI3K/AKT通路活性,降低p-mTOR水平和HIF-1 α的蛋白水平,降低糖酵解相关基因水平,进而抑制M1极化过程[36]。泛素特异性蛋白酶19 (USP19)作为抗炎开关,抑制炎症反应并促进M2型巨噬细胞极化。研究表明,USP19通过增加自噬通量和减少线粒体活性氧的产生来抑制NLRP3炎症小体的激活,USP19稳定的NLRP3通过与IRF4直接结合促进M2型巨噬细胞极化,从而阻止其p62介导的选择性自噬降解[37]。促进自噬的小分子药物也可促进巨噬细胞抗炎M2巨噬细胞极化。综上所述,激活巨噬细胞自噬可以促进M2巨噬细胞的极化而抑制M1巨噬细胞的极化,减轻炎症。抑制M1促炎性巨噬细胞的极化可以缓解慢性炎症和器官纤维化的进展。此外,还有研究表明,自噬会通过影响分泌炎性细胞因子和线粒体累积从而阻止巨噬细胞衰老[38]

4.4. 自噬与树突状细胞

树突状细胞(dendritic cells, DCs)是专职抗原提呈细胞,是连接天然免疫和适应性免疫的桥梁,DCs免疫激活能力的形成是需要自噬参与的。有研究表明,敲除自噬相关基因ATG16L1会上调小鼠DCs表面共刺激分子的表达,增强DCs的免疫激活能力[39]。ATG16L1基因单核苷酸多态性与克罗恩病的发生发展息息相关,而其主要风险等位基因与DCs的促炎表型相关[40]。Tlr7转基因小鼠会出现系统性红斑狼疮(systemic lupus erythematosus, SLE)样疾病,而在DCs中条件性敲除自噬相关基因Atg5会加剧该疾病的发生,进一步强调了自噬与自身免疫性疾病的相关性[41]

5. 总结与展望

自噬作为一种细胞自我保护机制,在肠道的免疫调节和炎症反应中扮演着复杂而重要的角色。近年来的研究显示,自噬不仅参与了细胞对病原体的清除,还在调节肠道免疫细胞功能方面发挥了关键作用。不同类型的免疫细胞,如巨噬细胞、树突状细胞和T细胞等,均受到自噬的影响,而自噬的失调可能导致炎症加剧或免疫功能失衡。这一方面提示了自噬在肠道健康中的双重角色,即既能保护宿主免受感染,又可能在某些情况下促进炎症。因此,理解自噬在这些细胞中的具体作用机制,对于开发新的治疗靶点至关重要。然而,研究自噬在肠道中作用的复杂性,也使得我们必须谨慎对待不同研究结果之间的相互矛盾。一些研究表明自噬的增强可能有助于减轻炎症,而另一些则指出自噬的过度活跃可能导致免疫失调。因此,未来的研究需要更深入地探讨自噬调节的平衡点,以及如何在不同的病理状态下实现这一平衡。

NOTES

*通讯作者。

参考文献

[1] Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2006) A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in ATG16L1. Nature Genetics, 39, 207-211.
https://doi.org/10.1038/ng1954
[2] Levine, B., Mizushima, N. and Virgin, H.W. (2011) Autophagy in Immunity and Inflammation. Nature, 469, 323-335.
https://doi.org/10.1038/nature09782
[3] Faas, M.M. and de Vos, P. (2020) Mitochondrial Function in Immune Cells in Health and Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165845.
https://doi.org/10.1016/j.bbadis.2020.165845
[4] Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The Role of ATG Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology, 27, 107-132.
https://doi.org/10.1146/annurev-cellbio-092910-154005
[5] Saxton, R.A. and Sabatini, D.M. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell, 169, 361-371.
https://doi.org/10.1016/j.cell.2017.03.035
[6] Blommaart, E.F.C., Luiken, J.J.F.P., Blommaart, P.J.E., van Woerkom, G.M. and Meijer, A.J. (1995) Phosphorylation of Ribosomal Protein S6 Is Inhibitory for Autophagy in Isolated Rat Hepatocytes. Journal of Biological Chemistry, 270, 2320-2326.
https://doi.org/10.1074/jbc.270.5.2320
[7] Lin, S. and Hardie, D.G. (2018) AMPK: Sensing Glucose as Well as Cellular Energy Status. Cell Metabolism, 27, 299-313.
https://doi.org/10.1016/j.cmet.2017.10.009
[8] Poillet-Perez, L., Sharp, D.W., Yang, Y., Laddha, S.V., Ibrahim, M., Bommareddy, P.K., et al. (2020) Autophagy Promotes Growth of Tumors with High Mutational Burden by Inhibiting a T-Cell Immune Response. Nature Cancer, 1, 923-934.
https://doi.org/10.1038/s43018-020-00110-7
[9] Thein, W., Po, W.W., Choi, W.S. and Sohn, U.D. (2021) Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches. Biomolecules & Therapeutics, 29, 353-364.
https://doi.org/10.4062/biomolther.2021.086
[10] Hu, C., Liao, S., Lv, L., Li, C. and Mei, Z. (2023) Intestinal Immune Imbalance Is an Alarm in the Development of IBD. Mediators of Inflammation, 2023, Article ID: 1073984.
https://doi.org/10.1155/2023/1073984
[11] Chiok, K. and Bose, S. (2022) A Novel Viral Regulatory Network for Autophagy Induction: Respiratory Syncytial Virus NS2 Protein Regulates Autophagy by Modulating BECN1 Isgylation and Protein Stability. Autophagy Reports, 1, 219-222.
https://doi.org/10.1080/27694127.2022.2076769
[12] He, W., Xiong, W. and Xia, X. (2019) Autophagy Regulation of Mammalian Immune Cells. In: Cui, J., Ed., Autophagy Regulation of Innate Immunity, Springer, 7-22.
https://doi.org/10.1007/978-981-15-0606-2_2
[13] Starr, T.K., Jameson, S.C. and Hogquist, K.A. (2003) Positive and Negative Selection of T Cells. Annual Review of Immunology, 21, 139-176.
https://doi.org/10.1146/annurev.immunol.21.120601.141107
[14] Schmid, D., Pypaert, M. and Münz, C. (2007) Antigen-loading Compartments for Major Histocompatibility Complex Class II Molecules Continuously Receive Input from Autophagosomes. Immunity, 26, 79-92.
https://doi.org/10.1016/j.immuni.2006.10.018
[15] Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., et al. (2011) Autophagy Promotes T-Cell Survival through Degradation of Proteins of the Cell Death Machinery. Cell Death & Differentiation, 19, 144-152.
https://doi.org/10.1038/cdd.2011.78
[16] Rivera Vargas, T., Cai, Z., Shen, Y., Dosset, M., Benoit-Lizon, I., Martin, T., et al. (2017) Selective Degradation of PU.1 during Autophagy Represses the Differentiation and Antitumour Activity of TH9 Cells. Nature Communications, 8, Article No. 559.
https://doi.org/10.1038/s41467-017-00468-w
[17] Lin, R., Ma, C., Fang, L., Xu, C., Zhang, C., Wu, X., et al. (2022) TOB1 Blocks Intestinal Mucosal Inflammation through Inducing ID2-Mediated Suppression of Th1/Th17 Cell Immune Responses in IBD. Cellular and Molecular Gastroenterology and Hepatology, 13, 1201-1221.
https://doi.org/10.1016/j.jcmgh.2021.12.007
[18] Kabat, A.M., Harrison, O.J., Riffelmacher, T., Moghaddam, A.E., Pearson, C.F., Laing, A., et al. (2016) The Autophagy Gene Atg16l1 Differentially Regulates Treg and TH2 Cells to Control Intestinal Inflammation. eLife, 5, e12444.
https://doi.org/10.7554/elife.12444
[19] Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., et al. (2011) Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. The Journal of Immunology, 186, 3299-3303.
https://doi.org/10.4049/jimmunol.1003613
[20] Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., et al. (2016) Autophagy Enforces Functional Integrity of Regulatory T Cells by Coupling Environmental Cues and Metabolic Homeostasis. Nature Immunology, 17, 277-285.
https://doi.org/10.1038/ni.3365
[21] Puleston, D.J., Zhang, H., Powell, T.J., Lipina, E., Sims, S., Panse, I., et al. (2014) Autophagy Is a Critical Regulator of Memory CD8+ T Cell Formation. eLife, 3, e03706.
https://doi.org/10.7554/elife.03706
[22] Murera, D., Arbogast, F., Arnold, J., Bouis, D., Muller, S. and Gros, F. (2018) CD4 T Cell Autophagy Is Integral to Memory Maintenance. Scientific Reports, 8, Article No. 5951.
https://doi.org/10.1038/s41598-018-23993-0
[23] Ziegler, P.K., Bollrath, J., Pallangyo, C.K., Matsutani, T., Canli, Ö., De Oliveira, T., et al. (2018) Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell, 174, 88-101.e16.
https://doi.org/10.1016/j.cell.2018.05.028
[24] Franco, F., Bevilacqua, A., Wu, R., Kao, K., Lin, C., Rousseau, L., et al. (2023) Regulatory Circuits of Mitophagy Restrict Distinct Modes of Cell Death during Memory CD8(+) T Cell Formation. Science Immunology, 8, eadf7579.
https://doi.org/10.1126/sciimmunol.adf7579
[25] Chen, H., Wu, X., Xu, C., Lin, J. and Liu, Z. (2021) Dichotomous Roles of Neutrophils in Modulating Pathogenic and Repair Processes of Inflammatory Bowel Diseases. Precision Clinical Medicine, 4, 246-257.
https://doi.org/10.1093/pcmedi/pbab025
[26] Riffelmacher, T., Clarke, A., Richter, F.C., Stranks, A., Pandey, S., Danielli, S., et al. (2017) Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity, 47, 466-480.e5.
https://doi.org/10.1016/j.immuni.2017.08.005
[27] Leveque-El Mouttie, L., Vu, T., Lineburg, K.E., Kuns, R.D., Bagger, F.O., Teal, B.E., et al. (2015) Autophagy Is Required for Stem Cell Mobilization by G-CSF. Blood, 125, 2933-2936.
https://doi.org/10.1182/blood-2014-03-562660
[28] Rožman, S., Yousefi, S., Oberson, K., Kaufmann, T., Benarafa, C. and Simon, H.U. (2014) The Generation of Neutrophils in the Bone Marrow Is Controlled by Autophagy. Cell Death & Differentiation, 22, 445-456.
https://doi.org/10.1038/cdd.2014.169
[29] Zhang, Y., Morgan, M.J., Chen, K., Choksi, S. and Liu, Z. (2012) Induction of Autophagy Is Essential for Monocyte-Macrophage Differentiation. Blood, 119, 2895-2905.
https://doi.org/10.1182/blood-2011-08-372383
[30] Qing, J., Zhang, Z., Novák, P., Zhao, G. and Yin, K. (2020) Mitochondrial Metabolism in Regulating Macrophage Polarization: An Emerging Regulator of Metabolic Inflammatory Diseases. Acta Biochimica et Biophysica Sinica, 52, 917-926.
https://doi.org/10.1093/abbs/gmaa081
[31] Zareie, M., Singh, P.K., Irvine, E.J., Sherman, P.M., McKay, D.M. and Perdue, M.H. (2001) Monocyte/Macrophage Activation by Normal Bacteria and Bacterial Products: Implications for Altered Epithelial Function in Crohn’s Disease. The American Journal of Pathology, 158, 1101-1109.
https://doi.org/10.1016/s0002-9440(10)64057-6
[32] Smythies, L.E., Sellers, M., Clements, R.H., Mosteller-Barnum, M., Meng, G., Benjamin, W.H., et al. (2005) Human Intestinal Macrophages Display Profound Inflammatory Anergy Despite Avid Phagocytic and Bacteriocidal Activity. Journal of Clinical Investigation, 115, 66-75.
https://doi.org/10.1172/jci200519229
[33] Seyedizade, S.S., Afshari, K., Bayat, S., Rahmani, F., Momtaz, S., Rezaei, N., et al. (2020) Current Status of M1 and M2 Macrophages Pathway as Drug Targets for Inflammatory Bowel Disease. Archivum Immunologiae et Therapiae Experimentalis, 68, Article No. 10.
https://doi.org/10.1007/s00005-020-00576-4
[34] Jacquel, A., Obba, S., Boyer, L., Dufies, M., Robert, G., Gounon, P., et al. (2012) Autophagy Is Required for Csf-1-Induced Macrophagic Differentiation and Acquisition of Phagocytic Functions. Blood, 119, 4527-4531.
https://doi.org/10.1182/blood-2011-11-392167
[35] Huang, S.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2014) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855.
https://doi.org/10.1038/ni.2956
[36] Liu, X., Wang, Y., Shao, P., Chen, Y., Yang, C., Wang, J., et al. (2024) Sargentodoxa Cuneata and Patrinia Villosa Extract Inhibits LPS-Induced Inflammation by Shifting Macrophages Polarization through FAK/PI3K/Akt Pathway Regulation and Glucose Metabolism Reprogramming. Journal of Ethnopharmacology, 318, Article ID: 116855.
https://doi.org/10.1016/j.jep.2023.116855
[37] Liu, T., Wang, L., Liang, P., Wang, X., Liu, Y., Cai, J., et al. (2020) USP19 Suppresses Inflammation and Promotes M2-Like Macrophage Polarization by Manipulating NLRP3 Function via Autophagy. Cellular & Molecular Immunology, 18, 2431-2442.
https://doi.org/10.1038/s41423-020-00567-7
[38] Stranks, A.J., Hansen, A.L., Panse, I., Mortensen, M., Ferguson, D.J.P., Puleston, D.J., et al. (2015) Autophagy Controls Acquisition of Aging Features in Macrophages. Journal of Innate Immunity, 7, 375-391.
https://doi.org/10.1159/000370112
[39] Hubbard-Lucey, V.M., Shono, Y., Maurer, K., West, M.L., Singer, N.V., Ziegler, C.G.K., et al. (2014) Autophagy Gene Atg16l1 Prevents Lethal T Cell Alloreactivity Mediated by Dendritic Cells. Immunity, 41, 579-591.
https://doi.org/10.1016/j.immuni.2014.09.011
[40] Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., et al. (2009) NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nature Medicine, 16, 90-97.
https://doi.org/10.1038/nm.2069
[41] Weindel, C.G., Richey, L.J., Mehta, A.J., Shah, M. and Huber, B.T. (2017) Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of Tlr7-Mediated Autoimmunity. The Journal of Immunology, 198, 1081-1092.
https://doi.org/10.4049/jimmunol.1601307