[1]
|
Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2006) A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in ATG16L1. Nature Genetics, 39, 207-211. https://doi.org/10.1038/ng1954
|
[2]
|
Levine, B., Mizushima, N. and Virgin, H.W. (2011) Autophagy in Immunity and Inflammation. Nature, 469, 323-335. https://doi.org/10.1038/nature09782
|
[3]
|
Faas, M.M. and de Vos, P. (2020) Mitochondrial Function in Immune Cells in Health and Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165845. https://doi.org/10.1016/j.bbadis.2020.165845
|
[4]
|
Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The Role of ATG Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology, 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
|
[5]
|
Saxton, R.A. and Sabatini, D.M. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell, 169, 361-371. https://doi.org/10.1016/j.cell.2017.03.035
|
[6]
|
Blommaart, E.F.C., Luiken, J.J.F.P., Blommaart, P.J.E., van Woerkom, G.M. and Meijer, A.J. (1995) Phosphorylation of Ribosomal Protein S6 Is Inhibitory for Autophagy in Isolated Rat Hepatocytes. Journal of Biological Chemistry, 270, 2320-2326. https://doi.org/10.1074/jbc.270.5.2320
|
[7]
|
Lin, S. and Hardie, D.G. (2018) AMPK: Sensing Glucose as Well as Cellular Energy Status. Cell Metabolism, 27, 299-313. https://doi.org/10.1016/j.cmet.2017.10.009
|
[8]
|
Poillet-Perez, L., Sharp, D.W., Yang, Y., Laddha, S.V., Ibrahim, M., Bommareddy, P.K., et al. (2020) Autophagy Promotes Growth of Tumors with High Mutational Burden by Inhibiting a T-Cell Immune Response. Nature Cancer, 1, 923-934. https://doi.org/10.1038/s43018-020-00110-7
|
[9]
|
Thein, W., Po, W.W., Choi, W.S. and Sohn, U.D. (2021) Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches. Biomolecules & Therapeutics, 29, 353-364. https://doi.org/10.4062/biomolther.2021.086
|
[10]
|
Hu, C., Liao, S., Lv, L., Li, C. and Mei, Z. (2023) Intestinal Immune Imbalance Is an Alarm in the Development of IBD. Mediators of Inflammation, 2023, Article ID: 1073984. https://doi.org/10.1155/2023/1073984
|
[11]
|
Chiok, K. and Bose, S. (2022) A Novel Viral Regulatory Network for Autophagy Induction: Respiratory Syncytial Virus NS2 Protein Regulates Autophagy by Modulating BECN1 Isgylation and Protein Stability. Autophagy Reports, 1, 219-222. https://doi.org/10.1080/27694127.2022.2076769
|
[12]
|
He, W., Xiong, W. and Xia, X. (2019) Autophagy Regulation of Mammalian Immune Cells. In: Cui, J., Ed., Autophagy Regulation of Innate Immunity, Springer, 7-22. https://doi.org/10.1007/978-981-15-0606-2_2
|
[13]
|
Starr, T.K., Jameson, S.C. and Hogquist, K.A. (2003) Positive and Negative Selection of T Cells. Annual Review of Immunology, 21, 139-176. https://doi.org/10.1146/annurev.immunol.21.120601.141107
|
[14]
|
Schmid, D., Pypaert, M. and Münz, C. (2007) Antigen-loading Compartments for Major Histocompatibility Complex Class II Molecules Continuously Receive Input from Autophagosomes. Immunity, 26, 79-92. https://doi.org/10.1016/j.immuni.2006.10.018
|
[15]
|
Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., et al. (2011) Autophagy Promotes T-Cell Survival through Degradation of Proteins of the Cell Death Machinery. Cell Death & Differentiation, 19, 144-152. https://doi.org/10.1038/cdd.2011.78
|
[16]
|
Rivera Vargas, T., Cai, Z., Shen, Y., Dosset, M., Benoit-Lizon, I., Martin, T., et al. (2017) Selective Degradation of PU.1 during Autophagy Represses the Differentiation and Antitumour Activity of TH9 Cells. Nature Communications, 8, Article No. 559. https://doi.org/10.1038/s41467-017-00468-w
|
[17]
|
Lin, R., Ma, C., Fang, L., Xu, C., Zhang, C., Wu, X., et al. (2022) TOB1 Blocks Intestinal Mucosal Inflammation through Inducing ID2-Mediated Suppression of Th1/Th17 Cell Immune Responses in IBD. Cellular and Molecular Gastroenterology and Hepatology, 13, 1201-1221. https://doi.org/10.1016/j.jcmgh.2021.12.007
|
[18]
|
Kabat, A.M., Harrison, O.J., Riffelmacher, T., Moghaddam, A.E., Pearson, C.F., Laing, A., et al. (2016) The Autophagy Gene Atg16l1 Differentially Regulates Treg and TH2 Cells to Control Intestinal Inflammation. eLife, 5, e12444. https://doi.org/10.7554/elife.12444
|
[19]
|
Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., et al. (2011) Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. The Journal of Immunology, 186, 3299-3303. https://doi.org/10.4049/jimmunol.1003613
|
[20]
|
Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., et al. (2016) Autophagy Enforces Functional Integrity of Regulatory T Cells by Coupling Environmental Cues and Metabolic Homeostasis. Nature Immunology, 17, 277-285. https://doi.org/10.1038/ni.3365
|
[21]
|
Puleston, D.J., Zhang, H., Powell, T.J., Lipina, E., Sims, S., Panse, I., et al. (2014) Autophagy Is a Critical Regulator of Memory CD8+ T Cell Formation. eLife, 3, e03706. https://doi.org/10.7554/elife.03706
|
[22]
|
Murera, D., Arbogast, F., Arnold, J., Bouis, D., Muller, S. and Gros, F. (2018) CD4 T Cell Autophagy Is Integral to Memory Maintenance. Scientific Reports, 8, Article No. 5951. https://doi.org/10.1038/s41598-018-23993-0
|
[23]
|
Ziegler, P.K., Bollrath, J., Pallangyo, C.K., Matsutani, T., Canli, Ö., De Oliveira, T., et al. (2018) Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell, 174, 88-101.e16. https://doi.org/10.1016/j.cell.2018.05.028
|
[24]
|
Franco, F., Bevilacqua, A., Wu, R., Kao, K., Lin, C., Rousseau, L., et al. (2023) Regulatory Circuits of Mitophagy Restrict Distinct Modes of Cell Death during Memory CD8(+) T Cell Formation. Science Immunology, 8, eadf7579. https://doi.org/10.1126/sciimmunol.adf7579
|
[25]
|
Chen, H., Wu, X., Xu, C., Lin, J. and Liu, Z. (2021) Dichotomous Roles of Neutrophils in Modulating Pathogenic and Repair Processes of Inflammatory Bowel Diseases. Precision Clinical Medicine, 4, 246-257. https://doi.org/10.1093/pcmedi/pbab025
|
[26]
|
Riffelmacher, T., Clarke, A., Richter, F.C., Stranks, A., Pandey, S., Danielli, S., et al. (2017) Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity, 47, 466-480.e5. https://doi.org/10.1016/j.immuni.2017.08.005
|
[27]
|
Leveque-El Mouttie, L., Vu, T., Lineburg, K.E., Kuns, R.D., Bagger, F.O., Teal, B.E., et al. (2015) Autophagy Is Required for Stem Cell Mobilization by G-CSF. Blood, 125, 2933-2936. https://doi.org/10.1182/blood-2014-03-562660
|
[28]
|
Rožman, S., Yousefi, S., Oberson, K., Kaufmann, T., Benarafa, C. and Simon, H.U. (2014) The Generation of Neutrophils in the Bone Marrow Is Controlled by Autophagy. Cell Death & Differentiation, 22, 445-456. https://doi.org/10.1038/cdd.2014.169
|
[29]
|
Zhang, Y., Morgan, M.J., Chen, K., Choksi, S. and Liu, Z. (2012) Induction of Autophagy Is Essential for Monocyte-Macrophage Differentiation. Blood, 119, 2895-2905. https://doi.org/10.1182/blood-2011-08-372383
|
[30]
|
Qing, J., Zhang, Z., Novák, P., Zhao, G. and Yin, K. (2020) Mitochondrial Metabolism in Regulating Macrophage Polarization: An Emerging Regulator of Metabolic Inflammatory Diseases. Acta Biochimica et Biophysica Sinica, 52, 917-926. https://doi.org/10.1093/abbs/gmaa081
|
[31]
|
Zareie, M., Singh, P.K., Irvine, E.J., Sherman, P.M., McKay, D.M. and Perdue, M.H. (2001) Monocyte/Macrophage Activation by Normal Bacteria and Bacterial Products: Implications for Altered Epithelial Function in Crohn’s Disease. The American Journal of Pathology, 158, 1101-1109. https://doi.org/10.1016/s0002-9440(10)64057-6
|
[32]
|
Smythies, L.E., Sellers, M., Clements, R.H., Mosteller-Barnum, M., Meng, G., Benjamin, W.H., et al. (2005) Human Intestinal Macrophages Display Profound Inflammatory Anergy Despite Avid Phagocytic and Bacteriocidal Activity. Journal of Clinical Investigation, 115, 66-75. https://doi.org/10.1172/jci200519229
|
[33]
|
Seyedizade, S.S., Afshari, K., Bayat, S., Rahmani, F., Momtaz, S., Rezaei, N., et al. (2020) Current Status of M1 and M2 Macrophages Pathway as Drug Targets for Inflammatory Bowel Disease. Archivum Immunologiae et Therapiae Experimentalis, 68, Article No. 10. https://doi.org/10.1007/s00005-020-00576-4
|
[34]
|
Jacquel, A., Obba, S., Boyer, L., Dufies, M., Robert, G., Gounon, P., et al. (2012) Autophagy Is Required for Csf-1-Induced Macrophagic Differentiation and Acquisition of Phagocytic Functions. Blood, 119, 4527-4531. https://doi.org/10.1182/blood-2011-11-392167
|
[35]
|
Huang, S.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2014) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855. https://doi.org/10.1038/ni.2956
|
[36]
|
Liu, X., Wang, Y., Shao, P., Chen, Y., Yang, C., Wang, J., et al. (2024) Sargentodoxa Cuneata and Patrinia Villosa Extract Inhibits LPS-Induced Inflammation by Shifting Macrophages Polarization through FAK/PI3K/Akt Pathway Regulation and Glucose Metabolism Reprogramming. Journal of Ethnopharmacology, 318, Article ID: 116855. https://doi.org/10.1016/j.jep.2023.116855
|
[37]
|
Liu, T., Wang, L., Liang, P., Wang, X., Liu, Y., Cai, J., et al. (2020) USP19 Suppresses Inflammation and Promotes M2-Like Macrophage Polarization by Manipulating NLRP3 Function via Autophagy. Cellular & Molecular Immunology, 18, 2431-2442. https://doi.org/10.1038/s41423-020-00567-7
|
[38]
|
Stranks, A.J., Hansen, A.L., Panse, I., Mortensen, M., Ferguson, D.J.P., Puleston, D.J., et al. (2015) Autophagy Controls Acquisition of Aging Features in Macrophages. Journal of Innate Immunity, 7, 375-391. https://doi.org/10.1159/000370112
|
[39]
|
Hubbard-Lucey, V.M., Shono, Y., Maurer, K., West, M.L., Singer, N.V., Ziegler, C.G.K., et al. (2014) Autophagy Gene Atg16l1 Prevents Lethal T Cell Alloreactivity Mediated by Dendritic Cells. Immunity, 41, 579-591. https://doi.org/10.1016/j.immuni.2014.09.011
|
[40]
|
Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., et al. (2009) NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nature Medicine, 16, 90-97. https://doi.org/10.1038/nm.2069
|
[41]
|
Weindel, C.G., Richey, L.J., Mehta, A.J., Shah, M. and Huber, B.T. (2017) Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of Tlr7-Mediated Autoimmunity. The Journal of Immunology, 198, 1081-1092. https://doi.org/10.4049/jimmunol.1601307
|