[1]
|
宋婷, 贺丰收, 程宇峰. 深度学习技术在雷达目标检测中的研究进展[J]. 航空科学技术, 2020, 31(10): 12-20.
|
[2]
|
陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38.
|
[3]
|
陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19-27.
|
[4]
|
董军. 认知雷达自适应波形与博弈波形设计算法研究[D]: [硕士学位论文]. 烟台: 烟台大学, 2024.
|
[5]
|
王佩, 仇兆炀, 祝俊, 等. 雷达侦收自适应信号处理架构研究[J]. 现代雷达, 2017, 39(11): 39-44+52.
|
[6]
|
蒲文浩, 刘锡祥, 陈昊, 等. 多传感器融合的激光雷达点云矫正与定位方法[J]. 激光与光电子学进展, 2023, 60(24): 275-282.
|
[7]
|
张瀚夫. 单光子激光雷达测距与成像技术研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2024.
|
[8]
|
Luc, D.V., Konovalov, A.A. and Hoang, L.M. (2023) Algorithm for Recognition of Small Air Targets by Trajectory Features in Passive Bistatic Radar. Journal of the Russian Universities. Radioelectronics, 26, 76-88. https://doi.org/10.32603/1993-8985-2023-26-5-76-88
|
[9]
|
Xiao, J., Li, C. and Yang, Q. (2023) Advanced BP Neural Network Algorithm on Radar Jamming Effectiveness Evaluation. 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Vol. 3, 1421-1424. https://doi.org/10.1109/iciba56860.2023.10165362
|
[10]
|
Marino, A., Aubry, A., De Maio, A., Braca, P., Gaglione, D. and Willett, P. (2021) Constrained Target Localization for Multiplatform Radar Systems. MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM), San Diego, 29 November-2 December 2021, 635-640. https://doi.org/10.1109/milcom52596.2021.9653089
|
[11]
|
Pak, S., Chalise, B.K. and Himed, B. (2019) Target Localization in Multi-Static Passive Radar Systems with Artificial Neural Networks. 2019 International Radar Conference (RADAR), Toulon, 23-27 September 2019, 1-5. https://doi.org/10.1109/radar41533.2019.171252
|
[12]
|
Song, L., Shengli, W. and Dingbao, X. (2019) Radar Track Prediction Method Based on BP Neural Network. The Journal of Engineering, 2019, 8051-8055. https://doi.org/10.1049/joe.2019.0655
|
[13]
|
Zhao, X., Li, J. and Guo, Q. (2022) A Relaxed Energy Function Based Analog Neural Network Approach to Target Localization in Distributed MIMO Radar. IEEE Transactions on Vehicular Technology, 71, 11160-11173. https://doi.org/10.1109/tvt.2022.3188546
|
[14]
|
Guo, C., Wang, H., Jian, T., He, Y. and Zhang, X. (2019) Radar Target Recognition Based on Feature Pyramid Fusion Lightweight CNN. IEEE Access, 7, 51140-51149. https://doi.org/10.1109/access.2019.2909348
|
[15]
|
Akula, A. and Sardana, H.K. (2019) Deep CNN-Based Feature Extractor for Target Recognition in Thermal Images. TENCON 2019-2019 IEEE Region 10 Conference (TENCON), Kochi, 17-20 October 2019, 2370-2375. https://doi.org/10.1109/tencon.2019.8929697
|
[16]
|
Ding, X., Xing, L., Lin, T., Wang, J., Li, Y. and Miao, Z. (2019) Evaluating CNNs for Military Target Recognition. 15th International Conference, ICIC 2019, Nanchang, 3-6 August 2019, 628-638. https://doi.org/10.1007/978-3-030-26969-2_59
|
[17]
|
Zhang, J., Xing, M. and Xie, Y. (2021) FEC: A Feature Fusion Framework for SAR Target Recognition Based on Electromagnetic Scattering Features and Deep CNN Features. IEEE Transactions on Geoscience and Remote Sensing, 59, 2174-2187. https://doi.org/10.1109/tgrs.2020.3003264
|
[18]
|
Guo, Y. and Yang, L. (2022) Radar Moving Target Detection Method Based on SET2 and AlexNet. Mathematical Problems in Engineering, 2022, Article ID: 3359871. https://doi.org/10.1155/2022/3359871
|
[19]
|
Li, Y., Zhang, S. and Wang, W. (2022) A Lightweight Faster R-CNN for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters, 19, Article ID: 4006105. https://doi.org/10.1109/lgrs.2020.3038901
|
[20]
|
Zhang, M., Su, Y. and Hu, X. (2023) Small Target Detection Based on Faster R-CNN. 3rd International Conference on Computer Vision and Data Mining (ICCVDM 2022), Hulun Buir, 19-21 August. https://doi.org/10.1117/12.2660388
|
[21]
|
Zheng, T., Li, J., Tian, H. and Wu, Q. (2023) The Process Analysis Method of SAR Target Recognition in Pre-Trained CNN Models. Sensors, 23, Article No. 6461. https://doi.org/10.3390/s23146461
|
[22]
|
Sehgal, B., Shekhawat, H.S. and Jana, S.K. (2019) Automatic Target Recognition Using Recurrent Neural Networks. 2019 International Conference on Range Technology (ICORT), Balasore, 15-17 February 2019, 1-5. https://doi.org/10.1109/icort46471.2019.9069656
|
[23]
|
Wang, M., Zhang, Y.D. and Cui, G. (2019) Human Motion Recognition Exploiting Radar with Stacked Recurrent Neural Network. Digital Signal Processing, 87, 125-131. https://doi.org/10.1016/j.dsp.2019.01.013
|
[24]
|
Li, X., Liu, Z., Huang, Z. and Liu, W. (2020) Radar Emitter Classification with Attention-Based Multi-RNNs. IEEE Communications Letters, 24, 2000-2004. https://doi.org/10.1109/lcomm.2020.2995842
|
[25]
|
Tang, T., Wang, C. and Gao, M. (2021) Radar Target Recognition Based on Micro-Doppler Signatures Using Recurrent Neural Network. 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, 7-10 May 2021, 189-194. https://doi.org/10.1109/icet51757.2021.9450934
|
[26]
|
Wang, H., Jiang, Z. and Ding, L. (2023) Working Modes Recognition Method of Phased Array Radar Based on TCN-BiLSTM Parallel Processing. 3rd International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022), Wuhan, 4-6 November 2022. https://doi.org/10.1117/12.2671073
|
[27]
|
Qu, W., Yao, G. and Meng, L. (2023) Research on Radar PRI Modulation Pattern Recognition Based on Recurrent Neural Network. 2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL), Zhuhai, 12-14 May 2023, 250-254. https://doi.org/10.1109/cvidl58838.2023.10166809
|
[28]
|
Kong, J. and Zhang, F. (2021) SAR Target Recognition with Generative Adversarial Network (GAN)-Based Data Augmentation. 2021 13th International Conference on Advanced Infocomm Technology (ICAIT), Yanji, 15-17 October 2021, 215-218. https://doi.org/10.1109/icait52638.2021.9701974
|
[29]
|
Carr, C., Dang, B. and Metcalf, J. (2021) RADGAN: Applying Adversarial Machine Learning to Track-before-Detect Radar. 2021 IEEE Radar Conference (RadarConf21), Atlanta, 8-14 May 2021, 1-6. https://doi.org/10.1109/radarconf2147009.2021.9455179
|
[30]
|
Pu, W. (2022) Shuffle GAN with Autoencoder: A Deep Learning Approach to Separate Moving and Stationary Targets in SAR Imagery. IEEE Transactions on Neural Networks and Learning Systems, 33, 4770-4784. https://doi.org/10.1109/tnnls.2021.3060747
|
[31]
|
Akcali, S. and Erden, F. (2021) Support of Data Augmentation with GAN on Faster R-CNN Based Buried Target Detection. 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, 9-11 June 2021, 1-4. https://doi.org/10.1109/siu53274.2021.9477828
|
[32]
|
Du, S., Hong, J., Wang, Y. and Qi, Y. (2022) A High-Quality Multicategory SAR Images Generation Method with Multiconstraint GAN for ATR. IEEE Geoscience and Remote Sensing Letters, 19, Article ID: 4011005. https://doi.org/10.1109/lgrs.2021.3065682
|
[33]
|
Zhao, D., Guo, G., Ni, Z., Pan, J., Yan, K. and Fang, G. (2023) WAEGAN: A Gans-Based Data Augmentation Method for GPR Data. IEEE Geoscience and Remote Sensing Letters, 20, Article ID: 3509005. https://doi.org/10.1109/lgrs.2023.3323981
|
[34]
|
Xiong, H., Li, J., Li, Z. and Zhang, Z. (2024) GPR-GAN: A Ground-Penetrating Radar Data Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 62, Article ID: 5200114. https://doi.org/10.1109/tgrs.2023.3337172
|
[35]
|
Ju, M., Luo, H., Wang, Z., Hui, B. and Chang, Z. (2019) The Application of Improved YOLO V3 in Multi-Scale Target Detection. Applied Sciences, 9, Article No. 3775. https://doi.org/10.3390/app9183775
|
[36]
|
Kim, W., Cho, H., Kim, J., Kim, B. and Lee, S. (2020) Yolo-Based Simultaneous Target Detection and Classification in Automotive FMCW Radar Systems. Sensors, 20, Article No. 2897. https://doi.org/10.3390/s20102897
|
[37]
|
Xu, D. and Wu, Y. (2020) Improved YOLO-V3 with Densenet for Multi-Scale Remote Sensing Target Detection. Sensors, 20, Article No. 4276. https://doi.org/10.3390/s20154276
|
[38]
|
Tang, X., Zhang, X., Shi, J. and Wei, S. (2021) A Moving Target Detection Method Based on Yolo for Dual-Beam Sar. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 11-16 July 2021, 5315-5318. https://doi.org/10.1109/igarss47720.2021.9554604
|
[39]
|
Kong, L., Wang, J. and Zhao, P. (2022) YOLO-G: A Lightweight Network Model for Improving the Performance of Military Targets Detection. IEEE Access, 10, 55546-55564. https://doi.org/10.1109/access.2022.3177628
|
[40]
|
Zhong, N., Bao, Q. and Yan, J. (2023) Intelligent Detection and Identification Method of Radar Moving Target. 3rd International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2023), Kuala Lumpur, 30 June-2 July 2023. https://doi.org/10.1117/12.3006011
|