[1]
|
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2023) Hallmarks of Aging: An Expanding Universe. Cell, 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001
|
[2]
|
Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., et al. (2014) Geroscience: Linking Aging to Chronic Disease. Cell, 159, 709-713. https://doi.org/10.1016/j.cell.2014.10.039
|
[3]
|
Baker, G.T. and Sprott, R.L. (1988) Biomarkers of Aging. Experimental Gerontology, 23, 223-239. https://doi.org/10.1016/0531-5565(88)90025-3
|
[4]
|
Rutledge, J., Oh, H. and Wyss-Coray, T. (2022) Measuring Biological Age Using Omics Data. Nature Reviews Genetics, 23, 715-727. https://doi.org/10.1038/s41576-022-00511-7
|
[5]
|
Wagner, K., Cameron-Smith, D., Wessner, B. and Franzke, B. (2016) Biomarkers of Aging: From Function to Molecular Biology. Nutrients, 8, Article No. 338. https://doi.org/10.3390/nu8060338
|
[6]
|
Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., et al. (2023) Biomarkers of Aging. Science China Life Sciences, 66, 893-1066. https://doi.org/10.1007/s11427-023-2305-0
|
[7]
|
Moqri, M., Herzog, C., Poganik, J.R., Justice, J., Belsky, D.W., Higgins-Chen, A., et al. (2023) Biomarkers of Aging for the Identification and Evaluation of Longevity Interventions. Cell, 186, 3758-3775. https://doi.org/10.1016/j.cell.2023.08.003
|
[8]
|
Beausejour, C.M. (2003) Reversal of Human Cellular Senescence: Roles of the P53 and P16 Pathways. The EMBO Journal, 22, 4212-4222. https://doi.org/10.1093/emboj/cdg417
|
[9]
|
Shay, J. (1991) A Role for Both RB and P53 in the Regulation of Human Cellular Senescence. Experimental Cell Research, 196, 33-39. https://doi.org/10.1016/0014-4827(91)90453-2
|
[10]
|
Salama, R., Sadaie, M., Hoare, M. and Narita, M. (2014) Cellular Senescence and Its Effector Programs. Genes & Development, 28, 99-114. https://doi.org/10.1101/gad.235184.113
|
[11]
|
Hernandez-Segura, A., Nehme, J. and Demaria, M. (2018) Hallmarks of Cellular Senescence. Trends in Cell Biology, 28, 436-453. https://doi.org/10.1016/j.tcb.2018.02.001
|
[12]
|
Takasugi, M., Okada, R., Takahashi, A., Virya Chen, D., Watanabe, S. and Hara, E. (2017) Small Extracellular Vesicles Secreted from Senescent Cells Promote Cancer Cell Proliferation through Epha2. Nature Communications, 8, Article No. 15729. https://doi.org/10.1038/ncomms15728
|
[13]
|
Fafián-Labora, J.A., Rodríguez-Navarro, J.A. and O’Loghlen, A. (2020) Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. Cell Metabolism, 32, 71-86.e5. https://doi.org/10.1016/j.cmet.2020.06.004
|
[14]
|
Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., et al. (2013) A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence. Nature Cell Biology, 15, 978-990. https://doi.org/10.1038/ncb2784
|
[15]
|
Jaenisch, R. and Bird, A. (2003) Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals. Nature Genetics, 33, 245-254. https://doi.org/10.1038/ng1089
|
[16]
|
Jung, M. and Pfeifer, G.P. (2015) Aging and DNA Methylation. BMC Biology, 13, Article No. 7. https://doi.org/10.1186/s12915-015-0118-4
|
[17]
|
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013) Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49, 359-367. https://doi.org/10.1016/j.molcel.2012.10.016
|
[18]
|
Horvath, S. (2015) Erratum to: DNA Methylation Age of Human Tissues and Cell Types. Genome Biology, 16, Article No. 96. https://doi.org/10.1186/s13059-015-0649-6
|
[19]
|
Han, S., Schroeder, E.A., Silva-García, C.G., Hebestreit, K., Mair, W.B. and Brunet, A. (2017) Mono-Unsaturated Fatty Acids Link H3k4me3 Modifiers to C. elegans Lifespan. Nature, 544, 185-190. https://doi.org/10.1038/nature21686
|
[20]
|
Cao, Q., Wang, W., Williams, J.B., Yang, F., Wang, Z. and Yan, Z. (2020) Targeting Histone K4 Trimethylation for Treatment of Cognitive and Synaptic Deficits in Mouse Models of Alzheimer’s Disease. Science Advances, 6, eabc8096. https://doi.org/10.1126/sciadv.abc8096
|
[21]
|
Bell, O., Burton, A., Dean, C., Gasser, S.M. and Torres-Padilla, M. (2023) Heterochromatin Definition and Function. Nature Reviews Molecular Cell Biology, 24, 691-694. https://doi.org/10.1038/s41580-023-00599-7
|
[22]
|
Lee, J., Demarest, T.G., Babbar, M., Kim, E.W., Okur, M.N., De, S., et al. (2019) Cockayne Syndrome Group B Deficiency Reduces H3k9me3 Chromatin Remodeler SETDB1 and Exacerbates Cellular Aging. Nucleic Acids Research, 47, 8548-8562. https://doi.org/10.1093/nar/gkz568
|
[23]
|
Zhang, B., Long, Q., Wu, S., Xu, Q., Song, S., Han, L., et al. (2024) Retraction Note: KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype. Nature Aging, 4, 1898-1898. https://doi.org/10.1038/s43587-024-00749-2
|
[24]
|
Abuetabh, Y., Wu, H.H., Chai, C., Al Yousef, H., Persad, S., Sergi, C.M., et al. (2022) DNA Damage Response Revisited: The P53 Family and Its Regulators Provide Endless Cancer Therapy Opportunities. Experimental & Molecular Medicine, 54, 1658-1669. https://doi.org/10.1038/s12276-022-00863-4
|
[25]
|
Rodier, F. and Campisi, J. (2011) Four Faces of Cellular Senescence. Journal of Cell Biology, 192, 547-556. https://doi.org/10.1083/jcb.201009094
|
[26]
|
Fraga, C.G., Shigenaga, M.K., Park, J.W., Degan, P. and Ames, B.N. (1990) Oxidative Damage to DNA during Aging: 8-Hydroxy-2’-Deoxyguanosine in Rat Organ DNA and Urine. Proceedings of the National Academy of Sciences, 87, 4533-4537. https://doi.org/10.1073/pnas.87.12.4533
|
[27]
|
Cusanelli, E., Romero, C.A.P. and Chartrand, P. (2013) Telomeric Noncoding RNA TERRA Is Induced by Telomere Shortening to Nucleate Telomerase Molecules at Short Telomeres. Molecular Cell, 51, 780-791. https://doi.org/10.1016/j.molcel.2013.08.029
|
[28]
|
Xu, M., Senanayaka, D., Zhao, R., Chigumira, T., Tripathi, A., Tones, J., et al. (2024) TERRA-LSD1 Phase Separation Promotes R-Loop Formation for Telomere Maintenance in ALT Cancer Cells. Nature Communications, 15, Article No. 2165. https://doi.org/10.1038/s41467-024-46509-z
|
[29]
|
Kokoszka, J.E., Coskun, P., Esposito, L.A. and Wallace, D.C. (2001) Increased Mitochondrial Oxidative Stress in the SoD2 (+/−) Mouse Results in the Age-Related Decline of Mitochondrial Function Culminating in Increased Apoptosis. Proceedings of the National Academy of Sciences, 98, 2278-2283. https://doi.org/10.1073/pnas.051627098
|
[30]
|
Herbst, A., Pak, J.W., McKenzie, D., Bua, E., Bassiouni, M. and Aiken, J.M. (2007) Accumulation of Mitochondrial DNA Deletion Mutations in Aged Muscle Fibers: Evidence for a Causal Role in Muscle Fiber Loss. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62, 235-245. https://doi.org/10.1093/gerona/62.3.235
|
[31]
|
Victorelli, S., Salmonowicz, H., Chapman, J., Martini, H., Vizioli, M.G., Riley, J.S., et al. (2023) Apoptotic Stress Causes MtDNA Release during Senescence and Drives the SASP. Nature, 622, 627-636. https://doi.org/10.1038/s41586-023-06621-4
|
[32]
|
Dikic, I. (2017) Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 86, 193-224. https://doi.org/10.1146/annurev-biochem-061516-044908
|
[33]
|
Chen, L. and Feany, M.B. (2005) Α-synuclein Phosphorylation Controls Neurotoxicity and Inclusion Formation in a Drosophila Model of Parkinson Disease. Nature Neuroscience, 8, 657-663. https://doi.org/10.1038/nn1443
|
[34]
|
Meng, J., Lv, Z., Qiao, X., Li, X., Li, Y., Zhang, Y., et al. (2017) The Decay of Redox-Stress Response Capacity Is a Substantive Characteristic of Aging: Revising the Redox Theory of Aging. Redox Biology, 11, 365-374. https://doi.org/10.1016/j.redox.2016.12.026
|
[35]
|
Campisi, J. (2005) Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell, 120, 513-522. https://doi.org/10.1016/j.cell.2005.02.003
|
[36]
|
Shelton, D.N., Chang, E., Whittier, P.S., Choi, D. and Funk, W.D. (1999) Microarray Analysis of Replicative Senescence. Current Biology, 9, 939-945. https://doi.org/10.1016/s0960-9822(99)80420-5
|
[37]
|
Aggarwal, B.B. (2003) Signalling Pathways of the TNF Superfamily: A Double-Edged Sword. Nature Reviews Immunology, 3, 745-756. https://doi.org/10.1038/nri1184
|
[38]
|
Micheau, O. and Tschopp, J. (2003) Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell, 114, 181-190. https://doi.org/10.1016/s0092-8674(03)00521-x
|
[39]
|
Hayden, M.S. and Ghosh, S. (2012) NF-κB, the First Quarter-Century: Remarkable Progress and Outstanding Questions. Genes & Development, 26, 203-234. https://doi.org/10.1101/gad.183434.111
|
[40]
|
Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J.E., et al. (2011) Control of the Senescence-Associated Secretory Phenotype by NF-κB Promotes Senescence and Enhances Chemosensitivity. Genes & Development, 25, 2125-2136. https://doi.org/10.1101/gad.17276711
|
[41]
|
Wertz, I.E., O’Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004) De-Ubiquitination and Ubiquitin Ligase Domains of A20 Downregulate NF-κB Signalling. Nature, 430, 694-699. https://doi.org/10.1038/nature02794
|
[42]
|
Herranz, N., Gallage, S., Mellone, M., Wuestefeld, T., Klotz, S., Hanley, C.J., et al. (2015) mTOR Regulates MAPKAPK2 Translation to Control the Senescence-Associated Secretory Phenotype. Nature Cell Biology, 17, 1205-1217. https://doi.org/10.1038/ncb3225
|
[43]
|
Bi, S., Liu, Z., Wu, Z., Wang, Z., Liu, X., Wang, S., et al. (2020) SIRT7 Antagonizes Human Stem Cell Aging as a Heterochromatin Stabilizer. Protein & Cell, 11, 483-504. https://doi.org/10.1007/s13238-020-00728-4
|
[44]
|
Liu, X., Liu, Z., Wu, Z., Ren, J., Fan, Y., Sun, L., et al. (2023) Resurrection of Endogenous Retroviruses during Aging Reinforces Senescence. Cell, 186, 287-304.e26. https://doi.org/10.1016/j.cell.2022.12.017
|
[45]
|
Glück, S., Guey, B., Gulen, M.F., Wolter, K., Kang, T., Schmacke, N.A., et al. (2017) Innate Immune Sensing of Cytosolic Chromatin Fragments through CGAS Promotes Senescence. Nature Cell Biology, 19, 1061-1070. https://doi.org/10.1038/ncb3586
|
[46]
|
Lyon, A.S., Peeples, W.B. and Rosen, M.K. (2020) A Framework for Understanding the Functions of Biomolecular Condensates across Scales. Nature Reviews Molecular Cell Biology, 22, 215-235. https://doi.org/10.1038/s41580-020-00303-z
|
[47]
|
Sabari, B.R., Dall’Agnese, A. and Young, R.A. (2020) Biomolecular Condensates in the Nucleus. Trends in Biochemical Sciences, 45, 961-977. https://doi.org/10.1016/j.tibs.2020.06.007
|
[48]
|
Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., et al. (2009) Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/condensation. Science, 324, 1729-1732. https://doi.org/10.1126/science.1172046
|
[49]
|
Galganski, L., Urbanek, M.O. and Krzyzosiak, W.J. (2017) Nuclear Speckles: Molecular Organization, Biological Function and Role in Disease. Nucleic Acids Research, 45, 10350-10368. https://doi.org/10.1093/nar/gkx759
|
[50]
|
Buchwalter, A. and Hetzer, M.W. (2017) Nucleolar Expansion and Elevated Protein Translation in Premature Aging. Nature Communications, 8, Article No. 328. https://doi.org/10.1038/s41467-017-00322-z
|
[51]
|
Fox, A.H. and Lamond, A.I. (2010) Paraspeckles. Cold Spring Harbor Perspectives in Biology, 2, a000687. https://doi.org/10.1101/cshperspect.a000687
|
[52]
|
Lallemand-Breitenbach, V. and de Thé, H. (2018) PML Nuclear Bodies: From Architecture to Function. Current Opinion in Cell Biology, 52, 154-161. https://doi.org/10.1016/j.ceb.2018.03.011
|
[53]
|
Hall, B.M., Balan, V., Gleiberman, A.S., Strom, E., Krasnov, P., Virtuoso, L.P., et al. (2017) p16(Ink4a) and Senescence-Associated β-Galactosidase Can Be Induced in Macrophages as Part of a Reversible Response to Physiological Stimuli. Aging, 9, 1867-1884. https://doi.org/10.18632/aging.101268
|
[54]
|
Akbarian, S., Beeri, M.S. and Haroutunian, V. (2013) Epigenetic Determinants of Healthy and Diseased Brain Aging and Cognition. JAMA Neurology, 70, 711-718. https://doi.org/10.1001/jamaneurol.2013.1459
|
[55]
|
Li, Y., Yu, H., Chen, C., Li, S., Zhang, Z., Xu, H., et al. (2020) Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5408452. https://doi.org/10.1155/2020/5408452
|
[56]
|
Duran‐Ortiz, S., List, E.O., Ikeno, Y., Young, J., Basu, R., Bell, S., et al. (2021) Growth Hormone Receptor Gene Disruption in Mature‐Adult Mice Improves Male Insulin Sensitivity and Extends Female Lifespan. Aging Cell, 20, e13506. https://doi.org/10.1111/acel.13506
|
[57]
|
Covarrubias, A.J., Perrone, R., Grozio, A. and Verdin, E. (2020) NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nature Reviews Molecular Cell Biology, 22, 119-141. https://doi.org/10.1038/s41580-020-00313-x
|
[58]
|
Chiu, M., Fan, L., Chen, T., Chen, Y., Chieh, J. and Horng, H. (2017) Plasma Tau Levels in Cognitively Normal Middle-Aged and Older Adults. Frontiers in Aging Neuroscience, 9, Article No. 51. https://doi.org/10.3389/fnagi.2017.00051
|
[59]
|
Cavedo, E., Lista, S., Houot, M., Vergallo, A., Grothe, M.J., Teipel, S., et al. (2020) Plasma Tau Correlates with Basal Forebrain Atrophy Rates in People at Risk for Alzheimer Disease. Neurology, 94, e30-e41. https://doi.org/10.1212/wnl.0000000000008696
|
[60]
|
Kaeser, S.A., Lehallier, B., Thinggaard, M., Häsler, L.M., Apel, A., Bergmann, C., et al. (2021) A Neuronal Blood Marker Is Associated with Mortality in Old Age. Nature Aging, 1, 218-225. https://doi.org/10.1038/s43587-021-00028-4
|
[61]
|
Henjum, K., Almdahl, I.S., Årskog, V., Minthon, L., Hansson, O., Fladby, T., et al. (2016) Cerebrospinal Fluid Soluble TREM2 in Aging and Alzheimer’s Disease. Alzheimer’s Research & Therapy, 8, Article No. 17. https://doi.org/10.1186/s13195-016-0182-1
|
[62]
|
Zhao, A., Jiao, Y., Ye, G., Kang, W., Tan, L., Li, Y., et al. (2022) Soluble TREM2 Levels Associate with Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. Journal of Clinical Investigation, 132, e158708. https://doi.org/10.1172/jci158708
|
[63]
|
Abdelhak, A., Hottenrott, T., Morenas-Rodríguez, E., Suárez-Calvet, M., Zettl, U.K., Haass, C., et al. (2019) Glial Activation Markers in CSF and Serum from Patients with Primary Progressive Multiple Sclerosis: Potential of Serum GFAP as Disease Severity Marker? Frontiers in Neurology, 10, Article No. 280. https://doi.org/10.3389/fneur.2019.00280
|
[64]
|
Wruck, W. and Adjaye, J. (2020) Meta-Analysis of Human Prefrontal Cortex Reveals Activation of GFAP and Decline of Synaptic Transmission in the Aging Brain. Acta Neuropathologica Communications, 8, Article No. 26. https://doi.org/10.1186/s40478-020-00907-8
|
[65]
|
Pelletier, A., Bernard, C., Dilharreguy, B., Helmer, C., Le Goff, M., Chanraud, S., et al. (2017) Patterns of Brain Atrophy Associated with Episodic Memory and Semantic Fluency Decline in Aging. Aging, 9, 741-752. https://doi.org/10.18632/aging.101186
|
[66]
|
Hoogendam, Y.Y., van der Lijn, F., Vernooij, M.W., Hofman, A., Niessen, W.J., van der Lugt, A., et al. (2014) Older Age Relates to Worsening of Fine Motor Skills: A Population-Based Study of Middle-Aged and Elderly Persons. Frontiers in Aging Neuroscience, 6, Article No. 259. https://doi.org/10.3389/fnagi.2014.00259
|
[67]
|
Zhang, L., Guo, J., Liu, Y., Sun, S., Liu, B., Yang, Q., et al. (2023) A Framework of Biomarkers for Vascular Aging: A Consensus Statement by the Aging Biomarker Consortium. Life Medicine, 2, lnad033. https://doi.org/10.1093/lifemedi/lnad033
|
[68]
|
Loessner, A., Alavi, A., Lewandrowski, K.U., et al. (1995) Regional Cerebral Function Determined by FDG-PET in Healthy Volunteers: Normal Patterns and Changes with Age. The Journal of Nuclear Medicine, 36, 1141-1149.
|
[69]
|
Pagani, M., Giuliani, A., Öberg, J., De Carli, F., Morbelli, S., Girtler, N., et al. (2017) Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-Fdg PET Data. Journal of Nuclear Medicine, 58, 1132-1139. https://doi.org/10.2967/jnumed.116.184309
|
[70]
|
Anderson, R., Lagnado, A., Maggiorani, D., Walaszczyk, A., Dookun, E., Chapman, J., et al. (2019) Length‐Independent Telomere Damage Drives Post‐Mitotic Cardiomyocyte Senescence. The EMBO Journal, 38, e100492. https://doi.org/10.15252/embj.2018100492
|
[71]
|
Piera-Velazquez, S. and Jimenez, S.A. (2019) Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiological Reviews, 99, 1281-1324. https://doi.org/10.1152/physrev.00021.2018
|
[72]
|
Dai, D., Chen, T., Johnson, S.C., Szeto, H. and Rabinovitch, P.S. (2012) Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants & Redox Signaling, 16, 1492-1526. https://doi.org/10.1089/ars.2011.4179
|
[73]
|
Ma, S., Sun, S., Li, J., Fan, Y., Qu, J., Sun, L., et al. (2020) Single-Cell Transcriptomic Atlas of Primate Cardiopulmonary Aging. Cell Research, 31, 415-432. https://doi.org/10.1038/s41422-020-00412-6
|
[74]
|
Zhang, Y., Zheng, Y., Wang, S., Fan, Y., Ye, Y., Jing, Y., et al. (2022) Single-Nucleus Transcriptomics Reveals a Gatekeeper Role for FOXP1 in Primate Cardiac Aging. Protein & Cell, 14, 279-293. https://doi.org/10.1093/procel/pwac038
|
[75]
|
Yoshida, Y., Nakanishi, K., Daimon, M., Ishiwata, J., Sawada, N., Hirokawa, M., et al. (2019) Alteration of Cardiac Performance and Serum B-Type Natriuretic Peptide Level in Healthy Aging. Journal of the American College of Cardiology, 74, 1789-1800. https://doi.org/10.1016/j.jacc.2019.07.080
|
[76]
|
de Lemos, J.A., Drazner, M.H., Omland, T., Ayers, C.R., Khera, A., Rohatgi, A., et al. (2010) Association of Troponin T Detected with a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population. JAMA, 304, 2503-2512. https://doi.org/10.1001/jama.2010.1768
|
[77]
|
Zhang, W., Che, Y., Tang, X., Chen, S., Song, M., Wang, L., et al. (2023) A Biomarker Framework for Cardiac Aging: The Aging Biomarker Consortium Consensus Statement. Life Medicine, 2, lnad035. https://doi.org/10.1093/lifemedi/lnad035
|
[78]
|
Zhang, L., Guo, J., Liu, Y., Sun, S., Liu, B., Yang, Q., et al. (2023) A Framework of Biomarkers for Vascular Aging: A Consensus Statement by the Aging Biomarker Consortium. Life Medicine, 2, lnad033. https://doi.org/10.1093/lifemedi/lnad033
|
[79]
|
Tian, X. and Li, Y. (2014) Endothelial Cell Senescence and Age-Related Vascular Diseases. Journal of Genetics and Genomics, 41, 485-495. https://doi.org/10.1016/j.jgg.2014.08.001
|
[80]
|
Yang, D., McCrann, D.J., Nguyen, H., Hilaire, C.S., DePinho, R.A., Jones, M.R., et al. (2007) Increased Polyploidy in Aortic Vascular Smooth Muscle Cells during Aging Is Marked by Cellular Senescence. Aging Cell, 6, 257-260. https://doi.org/10.1111/j.1474-9726.2007.00274.x
|
[81]
|
Bhayadia, R., Schmidt, B.M.W., Melk, A. and Hömme, M. (2015) Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 71, 161-169. https://doi.org/10.1093/gerona/glv008
|
[82]
|
Gao, P., Gao, P., Choi, M., Chegireddy, K., Slivano, O.J., Zhao, J., et al. (2020) Transcriptome Analysis of Mouse Aortae Reveals Multiple Novel Pathways Regulated by Aging. Aging, 12, 15603-15623. https://doi.org/10.18632/aging.103652
|
[83]
|
Yu, H., Liao, K., Hu, Y., Lv, D., Luo, M., Liu, Q., et al. (2022) Role of the CGAS-Sting Pathway in Aging-Related Endothelial Dysfunction. Aging and disease, 13, 1901-1918. https://doi.org/10.14336/ad.2022.0316
|
[84]
|
Minamino, T. and Komuro, I. (2007) Vascular Cell Senescence: Contribution to Atherosclerosis. Circulation Research, 100, 15-26. https://doi.org/10.1161/01.res.0000256837.40544.4a
|
[85]
|
Wang, S., Hu, S. and Mao, Y. (2021) The Mechanisms of Vascular Aging. Aging Medicine, 4, 153-158. https://doi.org/10.1002/agm2.12151
|
[86]
|
Aschacher, T., Geisler, D., Lenz, V., Aschacher, O., Winkler, B., Schaefer, A., et al. (2022) Impacts of Telomeric Length, Chronic Hypoxia, Senescence, and Senescence-Associated Secretory Phenotype on the Development of Thoracic Aortic Aneurysm. International Journal of Molecular Sciences, 23, Article No. 15498. https://doi.org/10.3390/ijms232415498
|
[87]
|
Chen, H., Wang, F., Gao, P., Pei, J., Liu, Y., Xu, T., et al. (2016) Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic Aneurysm. Circulation Research, 119, 1076-1088. https://doi.org/10.1161/circresaha.116.308895
|
[88]
|
Horvath, S. (2013) DNA Methylation Age of Human Tissues and Cell Types. Genome Biology, 14, R115. https://doi.org/10.1186/gb-2013-14-10-r115
|
[89]
|
Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., et al. (2018) An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging, 10, 573-591. https://doi.org/10.18632/aging.101414
|
[90]
|
Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., et al. (2019) DNA Methylation Grimage Strongly Predicts Lifespan and Healthspan. Aging, 11, 303-327. https://doi.org/10.18632/aging.101684
|
[91]
|
Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., et al. (2015) Development of a Forensically Useful Age Prediction Method Based on DNA Methylation Analysis. Forensic Science International: Genetics, 17, 173-179. https://doi.org/10.1016/j.fsigen.2015.05.001
|
[92]
|
Peters, M.J., Joehanes, R., Pilling, L.C., et al. (2015) The Transcriptional Landscape of Age in Human Peripheral Blood. Nature Communications, 6, Article No. 8570.
|
[93]
|
Fleischer, J.G., Schulte, R., Tsai, H.H., Tyagi, S., Ibarra, A., Shokhirev, M.N., et al. (2018) Predicting Age from the Transcriptome of Human Dermal Fibroblasts. Genome Biology, 19, Article No. 221. https://doi.org/10.1186/s13059-018-1599-6
|
[94]
|
Tanaka, T., Biancotto, A., Moaddel, R., Moore, A.Z., Gonzalez‐Freire, M., Aon, M.A., et al. (2018) Plasma Proteomic Signature of Age in Healthy Humans. Aging Cell, 17, e12799. https://doi.org/10.1111/acel.12799
|
[95]
|
Herzog, C.M.S., Goeminne, L.J.E., Poganik, J.R., Barzilai, N., Belsky, D.W., Betts-LaCroix, J., et al. (2024) Challenges and Recommendations for the Translation of Biomarkers of Aging. Nature Aging, 4, 1372-1383. https://doi.org/10.1038/s43587-024-00683-3
|