|
[1]
|
Violle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007) Let the Concept of Trait Be Functional! Oikos, 116, 882-892. [Google Scholar] [CrossRef]
|
|
[2]
|
Lavorel, S. and Garnier, E. (2002) Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556. [Google Scholar] [CrossRef]
|
|
[3]
|
Li, G., Yang, D. and Sun, S. (2008) Allometric Relationships between Lamina Area, Lamina Mass and Petiole Mass of 93 Temperate Woody Species Vary with Leaf Habit, Leaf Form and Altitude. Functional Ecology, 22, 557-564. [Google Scholar] [CrossRef]
|
|
[4]
|
Messier, J., McGill, B.J. and Lechowicz, M.J. (2010) How Do Traits Vary across Ecological Scales? A Case for Trait‐based Ecology. Ecology Letters, 13, 838-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Albert, C.H., de Bello, F., Boulangeat, I., Pellet, G., Lavorel, S. and Thuiller, W. (2011) On the Importance of Intraspecific Variability for the Quantification of Functional Diversity. Oikos, 121, 116-126. [Google Scholar] [CrossRef]
|
|
[6]
|
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035.
|
|
[7]
|
Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
|
[8]
|
National Oceanic and Atmospheric Administration (NOAA) (2023) Trends in Atmospheric Carbon Dioxide. Global Monitoring Laboratory.
|
|
[9]
|
Kruijt, B., Witte, J.M., Jacobs, C.M.J. and Kroon, T. (2008) Effects of Rising Atmospheric CO2 on Evapotranspiration and Soil Moisture: A Practical Approach for the Netherlands. Journal of Hydrology, 349, 257-267. [Google Scholar] [CrossRef]
|
|
[10]
|
王秋玲, 周广胜. 春玉米持续干旱过程中常用气孔导度模型的比较研究[J]. 生态学报, 2018, 38(19): 6846-6856.
|
|
[11]
|
Reich, P.B., Hobbie, S.E., Lee, T.D. and Pastore, M.A. (2018) Unexpected Reversal of C3 versus C4 Grass Response to Elevated CO2 during a 20-Year Field Experiment. Science, 360, 317-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nie, M., Lu, M., Bell, J., Raut, S. and Pendall, E. (2013) Altered Root Traits Due to Elevated CO2: A Meta‐Analysis. Global Ecology and Biogeography, 22, 1095-1105. [Google Scholar] [CrossRef]
|
|
[13]
|
Treseder, K.K. (2004) A Meta‐Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytologist, 164, 347-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lindroth, R.L. (2010) Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics. Journal of Chemical Ecology, 36, 2-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Robinson, E.A., Ryan, G.D. and Newman, J.A. (2012) A Meta‐Analytical Review of the Effects of Elevated CO2 on Plant-Arthropod Interactions Highlights the Importance of Interacting Environmental and Biological Variables. New Phytologist, 194, 321-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Springer, C.J. and Ward, J.K. (2007) Flowering Time and Elevated Atmospheric CO2. New Phytologist, 176, 243-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fernando, N., Panozzo, J., Tausz, M., Norton, R., Fitzgerald, G., Khan, A., et al. (2015) Rising CO2 Concentration Altered Wheat Grain Proteome and Flour Rheological Characteristics. Food Chemistry, 170, 448-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hättenschwiler, S. (2001) Tree Seedling Growth in Natural Deep Shade: Functional Traits Related to Interspecific Variation in Response to Elevated CO2. Oecologia, 129, 31-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
张凯, 张勃, 王润元, 等. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响[J]. 生态环境学报, 2021, 30(2): 223-232.
|
|
[20]
|
Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., et al. (2005) Assessing the Generality of Global Leaf Trait Relationships. New Phytologist, 166, 485-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Way, D.A. and Oren, R. (2010) Differential Responses to Changes in Growth Temperature between Trees from Different Functional Groups and Biomes: A Review and Synthesis of Data. Tree Physiology, 30, 669-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. and Mommer, L. (2011) Biomass Allocation to Leaves, Stems and Roots: Meta‐Analyses of Interspecific Variation and Environmental Control. New Phytologist, 193, 30-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chaves, M.M., Maroco, J.P. and Pereira, J.S. (2003) Understanding Plant Responses to Drought—From Genes to the Whole Plant. Functional Plant Biology, 30, 239-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., et al. (2016) Meta-Analysis Reveals That Hydraulic Traits Explain Cross-Species Patterns of Drought-Induced Tree Mortality across the Globe. Proceedings of the National Academy of Sciences, 113, 5024-5029. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. (2017) Global Climatic Drivers of Leaf Size. Science, 357, 917-921. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Royer, D.L., Wilf, P., Janesko, D.A., Kowalski, E.A. and Dilcher, D.L. (2008) Correlations of Climate and Plant Ecology to Leaf Size and Shape: Potential Proxies for the Fossil Record. American Journal of Botany, 95, 925-933.
|
|
[27]
|
Reich, P.B., Hobbie, S.E. and Lee, T.D. (2014) Plant Growth Enhancement by Elevated CO2 Eliminated by Joint Water and Nitrogen Limitation. Nature Geoscience, 7, 920-924. [Google Scholar] [CrossRef]
|
|
[28]
|
孟凡超, 郭军, 周莉, 等. 气温、CO2浓度和降水交互作用对作物生长和产量的影响[J]. 应用生态学报, 2017, 28(12): 4117-4126.
|
|
[29]
|
Meng, T., Ni, J. and Harrison, S.P. (2009) Plant Morphometric Traits and Climate Gradients in Northern China: A Meta-Analysis Using Quadrat and Flora Data. Annals of Botany, 104, 1217-1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Reich, P.B. and Oleksyn, J. (2004) Global Patterns of Plant Leaf N and P in Relation to Temperature and Latitude. Proceedings of the National Academy of Sciences, 101, 11001-11006. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. (2017) Global Climatic Drivers of Leaf Size. Science, 357, 917-921. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bertolino, L.T., Caine, R.S. and Gray, J.E. (2019) Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science, 10, Article 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lynch, J.P. (2018) Rightsizing Root Phenotypes for Drought Resistance. Journal of Experimental Botany, 69, 3279-3292. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bengough, A.G., McKenzie, B.M., Hallett, P.D. and Valentine, T.A. (2011) Root Elongation, Water Stress, and Mechanical Impedance: A Review of Limiting Stresses and Beneficial Root Tip Traits. Journal of Experimental Botany, 62, 59-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Brodersen, C.R., Knipfer, T. and McElrone, A.J. (2019) In vivo Visualization of the Final Stages of Xylem Vessel Refilling in Grapevine (Vitis Vinifera) Stems. New Phytologist, 222, 864-872.
|
|
[36]
|
Wright, I.J., Reich, P.B. and Westoby, M. (2001) Strategy Shifts in Leaf Physiology, Structure and Nutrient Content between Species of High‐ and Low‐Rainfall and High‐ and Low‐Nutrient Habitats. Functional Ecology, 15, 423-434. [Google Scholar] [CrossRef]
|
|
[37]
|
Santiago, L.S., Kitajima, K., Wright, S.J. and Mulkey, S.S. (2004) Coordinated Changes in Photosynthesis, Water Relations and Leaf Nutritional Traits of Canopy Trees along a Precipitation Gradient in Lowland Tropical Forest. Oecologia, 139, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
温琦, 赵文博, 张幽静, 等. 植物干旱胁迫响应的研究进展[J]. 江苏农业科学, 2020, 48(12): 11-15.
|
|
[39]
|
Turner, B.L., Lambin, E.F. and Reenberg, A. (2007) The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proceedings of the National Academy of Sciences, 104, 20666-20671. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. and Villar, R. (2009) Causes and Consequences of Variation in Leaf Mass per Area (LMA): A Meta‐Analysis. New Phytologist, 182, 565-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004) The Worldwide Leaf Economics Spectrum. Nature, 428, 821-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of Chicago Press. [Google Scholar] [CrossRef]
|
|
[43]
|
Dicke, M. and Baldwin, I.T. (2010) The Evolutionary Context for Herbivore-Induced Plant Volatiles: Beyond the ‘Cry for Help’. Trends in Plant Science, 15, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Bardgett, R.D., Mommer, L. and De Vries, F.T. (2014) Going Underground: Root Traits as Drivers of Ecosystem Processes. Trends in Ecology & Evolution, 29, 692-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Heijden, M.G.A.V.D., Martin, F.M., Selosse, M., et al. (2015) Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. The New Phytologist, 205, 1406-1423. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Matesanz, S., Gianoli, E. and Valladares, F. (2010) Global Change and the Evolution of Phenotypic Plasticity in Plants. Annals of the New York Academy of Sciences, 1206, 35-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hu, X., He, Y., Gao, L., et al. (2023) Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests, 14, Article No. 1258. [Google Scholar] [CrossRef]
|
|
[48]
|
Gossner, M.M., Lewinsohn, T.M., Kahl, T., Grassein, F., Boch, S., Prati, D., et al. (2016) Land-Use Intensification Causes Multitrophic Homogenization of Grassland Communities. Nature, 540, 266-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pakeman, R.J. (2011) Functional Diversity Indices Reveal the Impacts of Land Use Intensification on Plant Community Assembly. Journal of Ecology, 99, 1143-1151. [Google Scholar] [CrossRef]
|
|
[50]
|
Han, T., Tang, X., Ren, H., Wang, J., Liu, N. and Guo, Q. (2021) Community/Ecosystem Functional Diversity: Measurements and Development. Acta Ecologica Sinica, 41, 3286-3295. [Google Scholar] [CrossRef]
|
|
[51]
|
Wang, G. and Huang, X. (2007) A Review of Land Use Change Models in China. Journal of Land Science, 2, 1-10.
|
|
[52]
|
Dı́az, S. and Cabido, M. (2001) Vive la différence: Plant Functional Diversity Matters to Ecosystem Processes. Trends in Ecology & Evolution, 16, 646-655. [Google Scholar] [CrossRef]
|
|
[53]
|
Jiang, H. and Qiu, B. (2010) Inhibition of Photosynthesis by UV-B Exposure and Its Repair in the Bloom-Forming Cyanobacterium Microcystis Aeruginosa. Journal of Applied Phycology, 23, 691-696. [Google Scholar] [CrossRef]
|
|
[54]
|
Bhandari, R.R. and Sharma, P.K. (2010) Photosynthetic and Biochemical Characterization of Pigments and UV-Absorbing Compounds in Phormidium Tenue Due to UV-B Radiation. Journal of Applied Phycology, 23, 283-292. [Google Scholar] [CrossRef]
|
|
[55]
|
Barnes, P.W., Flint, S.D. and Caldwell, M.M. (1990) Morphological Responses of Crop and Weed Species of Different Growth Forms to Ultraviolet‐B Radiation. American Journal of Botany, 77, 1354-1360. [Google Scholar] [CrossRef]
|
|
[56]
|
Li, H., Pan, K., Liu, Q. and Wang, J. (2009) Effect of Enhanced Ultraviolet-B on Allelopathic Potential of Zanthoxylum Bungeanum. Scientia Horticulturae, 119, 310-314. [Google Scholar] [CrossRef]
|
|
[57]
|
Asshoff, R., Zotz, G. and Körner, C. (2006) Growth and Phenology of Mature Temperate Forest Trees in Elevated CO2. Global Change Biology, 12, 848-861. [Google Scholar] [CrossRef]
|
|
[58]
|
Pasari, J.R., Levi, T., Zavaleta, E.S. and Tilman, D. (2013) Several Scales of Biodiversity Affect Ecosystem Multi-functionality. Proceedings of the National Academy of Sciences, 110, 10219-10222. [Google Scholar] [CrossRef] [PubMed]
|