[1]
|
Cheever, M.A., Allison, J.P., Ferris, A.S., Finn, O.J., Hastings, B.M., Hecht, T.T., et al. (2009) The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clinical Cancer Research, 15, 5323-5337. https://doi.org/10.1158/1078-0432.ccr-09-0737
|
[2]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[3]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[4]
|
McPhail, S., Johnson, S., Greenberg, D., Peake, M. and Rous, B. (2015) Stage at Diagnosis and Early Mortality from Cancer in England. British Journal of Cancer, 112, S108-S115. https://doi.org/10.1038/bjc.2015.49
|
[5]
|
Amin, M.B., Greene, F.L., Edge, S.B., Compton, C.C., Gershenwald, J.E., Brookland, R.K., et al. (2017) The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population‐Based to a More “Personalized” Approach to Cancer Staging. CA: A Cancer Journal for Clinicians, 67, 93-99. https://doi.org/10.3322/caac.21388
|
[6]
|
Teichgraeber, D.C., Guirguis, M.S. and Whitman, G.J. (2021) Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, 8th Edition, and Current Challenges for Radiologists, from the AJR Special Series on Cancer Staging. American Journal of Roentgenology, 217, 278-290. https://doi.org/10.2214/ajr.20.25223
|
[7]
|
Zhang, Z., Bajic, V.B., Yu, J., Cheung, K.-H. and Townsend, J.P. (2011) Data Integration in Bioinformatics: Current Efforts and Challenges. In: Mahdavi, M.A., Ed., Bioinformatics—Trends and Methodologies, InTech, 41-56. https://doi.org/10.5772/21654
|
[8]
|
Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) Review the Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Współczesna Onkologia, 1, 68-77. https://doi.org/10.5114/wo.2014.47136
|
[9]
|
Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., et al. (2013) The Cancer Genome Atlas Pan-Cancer Analysis Project. Nature Genetics, 45, 1113-1120. https://doi.org/10.1038/ng.2764
|
[10]
|
van de Wiel, M.A., Lien, T.G., Verlaat, W., van Wieringen, W.N. and Wilting, S.M. (2015) Better Prediction by Use of Co‐Data: Adaptive Group‐Regularized Ridge Regression. Statistics in Medicine, 35, 368-381. https://doi.org/10.1002/sim.6732
|
[11]
|
Singh, A., Shannon, C.P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S.J., et al. (2019) DIABLO: An Integrative Approach for Identifying Key Molecular Drivers from Multi-Omics Assays. Bioinformatics, 35, 3055-3062. https://doi.org/10.1093/bioinformatics/bty1054
|
[12]
|
Kim, D., Li, R., Dudek, S.M. and Ritchie, M.D. (2013) ATHENA: Identifying Interactions between Different Levels of Genomic Data Associated with Cancer Clinical Outcomes Using Grammatical Evolution Neural Network. BioData Mining, 6, Article No. 23. https://doi.org/10.1186/1756-0381-6-23
|
[13]
|
Huang, Z., Zhan, X., Xiang, S., Johnson, T.S., Helm, B., Yu, C.Y., et al. (2019) SALMON: Survival Analysis Learning with Multi-Omics Neural Networks on Breast Cancer. Frontiers in Genetics, 10, Article 166. https://doi.org/10.3389/fgene.2019.00166
|
[14]
|
Günther, O.P., Chen, V., Freue, G.C., Balshaw, R.F., Tebbutt, S.J., Hollander, Z., et al. (2012) A Computational Pipeline for the Development of Multi-Marker Bio-Signature Panels and Ensemble Classifiers. BMC Bioinformatics, 13, Article No. 326. https://doi.org/10.1186/1471-2105-13-326
|
[15]
|
Kline, A., Wang, H., Li, Y., Dennis, S., Hutch, M., Xu, Z., et al. (2022) Multimodal Machine Learning in Precision Health: A Scoping Review. npj Digital Medicine, 5, Article No. 171. https://doi.org/10.1038/s41746-022-00712-8
|
[16]
|
Abdelaziz, E.H., Ismail, R., Mabrouk, M.S. and Amin, E. (2024) Multi-Omics Data Integration and Analysis Pipeline for Precision Medicine: Systematic Review. Computational Biology and Chemistry, 113, Article 108254. https://doi.org/10.1016/j.compbiolchem.2024.108254
|
[17]
|
Tian, J., Zhu, M., Ren, Z., Zhao, Q., Wang, P., He, C.K., et al. (2022) Deep Learning Algorithm Reveals Two Prognostic Subtypes in Patients with Gliomas. BMC Bioinformatics, 23, Article No. 417. https://doi.org/10.1186/s12859-022-04970-x
|
[18]
|
Lin, Y., Zhang, W., Cao, H., Li, G. and Du, W. (2020) Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Genes, 11, Article 888. https://doi.org/10.3390/genes11080888
|
[19]
|
Madhumita, and Paul, S. (2022) Capturing the Latent Space of an Autoencoder for Multi-Omics Integration and Cancer Subtyping. Computers in Biology and Medicine, 148, Article 105832. https://doi.org/10.1016/j.compbiomed.2022.105832
|
[20]
|
Rong, Z., Liu, Z., Song, J., Cao, L., Yu, Y., Qiu, M., et al. (2022) Mcluster-VAEs: An End-to-End Variational Deep Learning-Based Clustering Method for Subtype Discovery Using Multi-Omics Data. Computers in Biology and Medicine, 150, Article 106085. https://doi.org/10.1016/j.compbiomed.2022.106085
|
[21]
|
Rong, Z., Lingyun, D., Jinxing, L. and Ying, G. (2021) Diagnostic Classification of Lung Cancer Using Deep Transfer Learning Technology and Multi‐Omics Data. Chinese Journal of Electronics, 30, 843-852. https://doi.org/10.1049/cje.2021.06.006
|
[22]
|
Hu, Y., Zhao, L., Li, Z., Dong, X., Xu, T. and Zhao, Y. (2022) Classifying the Multi-Omics Data of Gastric Cancer Using a Deep Feature Selection Method. Expert Systems with Applications, 200, Article 116813. https://doi.org/10.1016/j.eswa.2022.116813
|
[23]
|
Paul, T.K. and Iba, H. (2009) Prediction of Cancer Class with Majority Voting Genetic Programming Classifier Using Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6, 353-367. https://doi.org/10.1109/tcbb.2007.70245
|
[24]
|
Broët, P., Kuznetsov, V.A., Bergh, J., Liu, E.T. and Miller, L.D. (2006) Identifying Gene Expression Changes in Breast Cancer That Distinguish Early and Late Relapse among Uncured Patients. Bioinformatics, 22, 1477-1485. https://doi.org/10.1093/bioinformatics/btl110
|
[25]
|
Huang, X., Lei, Q., Xie, T., Zhang, Y., Hu, Z. and Zhou, Q. (2020) Deep Transfer Convolutional Neural Network and Extreme Learning Machine for Lung Nodule Diagnosis on CT Images. Knowledge-Based Systems, 204, Article 106230. https://doi.org/10.1016/j.knosys.2020.106230
|
[26]
|
Koike, Y., Aokage, K., Ikeda, K., Nakai, T., Tane, K., Miyoshi, T., et al. (2020) Machine Learning-Based Histological Classification That Predicts Recurrence of Peripheral Lung Squamous Cell Carcinoma. Lung Cancer, 147, 252-258. https://doi.org/10.1016/j.lungcan.2020.07.011
|
[27]
|
Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., et al. (2016) Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images. IEEE Transactions on Medical Imaging, 35, 119-130. https://doi.org/10.1109/tmi.2015.2458702
|
[28]
|
Li, X., Ma, J., Leng, L., Han, M., Li, M., He, F., et al. (2022) MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Frontiers in Genetics, 13, Article 806842. https://doi.org/10.3389/fgene.2022.806842
|
[29]
|
Fix, E. and Hodges, J.L. (1989) Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical Review/Revue Internationale de Statistique, 57, 238-247. https://doi.org/10.2307/1403797
|
[30]
|
Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992) A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, 27-29 July 1992, 144-152. https://doi.org/10.1145/130385.130401
|
[31]
|
Meng, Q. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 3149-3157.
|