动脉瘤性蛛网膜下腔出血预后的研究进展
Research Progress on the Prognosis of Aneurysmal Subarachnoid Hemorrhage
DOI: 10.12677/acm.2025.1541014, PDF, HTML, XML,   
作者: 熊 韩, 何朝晖*:重庆医科大学附属第一医院,神经外科,重庆
关键词: 动脉瘤性蛛网膜下腔出血预后诊疗方案Aneurysmal Subarachnoid Hemorrhage Prognosis Diagnosis and Treatment Plan
摘要: 动脉瘤性蛛网膜下腔出血(aSAH)是一种高致死、致残率的神经血管急症,其预后受患者基线特征、动脉瘤解剖特性、治疗策略及并发症等多因素动态影响。临床早期干预(如发病24小时内行动脉瘤栓塞或夹闭)不仅可以降低再出血率,还可改善患者预后,但仍需注重个体化治疗策略。并发症如早期脑损伤、迟发性脑缺血和慢性脑积水会增加患者不良预后风险。传统的评估工具(如Hunt-Hess评分、WFNS分级)具有对认知和生活质量评估不足的局限,而近红外光谱技术(NIRS)通过监测脑氧供需失衡提升早期预警能力,血清生物标志物(GFAP、NfL)联合机器学习模型(整合影像组学与临床数据)可提高预后预测的可靠度。当前研究面临的挑战包括治疗争议(血压管理目标、尼莫地平给药方式)、并发症机制不明(如脑积水、迟发性脑缺血)及长期认知功能数据匮乏。未来需通过多中心协作、精准医学策略及动态监测技术突破现有局限,实现个体化全周期管理,改善患者功能与生活质量。本文系统综述了aSAH的遗传和病理生理机制、临床表现、预后影响因素、预后评估及诊疗进展。
Abstract: Aneurysmal subarachnoid hemorrhage (aSAH) is a neurovascular emergency characterized by high mortality and disability rates. Patient prognosis is dynamically influenced by multiple factors, including baseline characteristics, aneurysm anatomical features, treatment strategies, and complications. Early clinical interventions, such as aneurysm embolization or surgical clipping within 24 hours of onset, not only reduce rebleeding rates but also improve outcomes, though individualized treatment strategies remain essential. Complications such as early brain injury, delayed cerebral ischemia (DCI), and chronic hydrocephalus significantly elevate the risk of poor prognosis. Traditional assessment tools (e.g., Hunt-Hess scale, World Federation of Neurological Societies [WFNS] grading) exhibit limitations in evaluating cognitive function and quality of life. In contrast, near-infrared spectroscopy (NIRS) enhances early warning capabilities by monitoring cerebral oxygen supply-demand imbalance, while serum biomarkers (e.g., GFAP, NfL) combined with machine learning models integrating radiomics and clinical data improve the reliability of prognostic predictions. Current research challenges include unresolved therapeutic controversies (e.g., optimal blood pressure management targets, routes of nimodipine administration), unclear mechanisms of complications (e.g., hydrocephalus, DCI), and insufficient long-term cognitive function data. Future advancements require multicenter collaboration, precision medicine strategies, and dynamic monitoring technologies to overcome existing limitations, enabling personalized whole-cycle management and improving functional outcomes and quality of life. This review systematically synthesizes the genetic and pathophysiological mechanisms, clinical manifestations, prognostic determinants, and recent advances in the diagnosis and treatment of aSAH.
文章引用:熊韩, 何朝晖. 动脉瘤性蛛网膜下腔出血预后的研究进展[J]. 临床医学进展, 2025, 15(4): 924-933. https://doi.org/10.12677/acm.2025.1541014

1. 引言

动脉瘤性蛛网膜下腔出血(Aneurysmal subarachnoid hemorrhage, aSAH)是由颅内动脉瘤破裂导致动脉血液流入蛛网膜下腔的急性脑血管事件,占所有非外伤性蛛网膜下腔出血的85% [1]。其临床特征以突发剧烈头痛、意识障碍、脑膜刺激征为主要表现,常伴随高死亡率和致残率[2]。长期幸存者尽管在出血十多年后生活质量或许有所改善,但诸如常见的头痛、认知障碍、癫痫等后遗症,仍严重干扰其日常活动与社交,致使生活质量降低[3]。动脉瘤性蛛网膜下腔出血患者因病情复杂、并发症多,需长时间住院及多学科协作治疗,占用大量医疗资源,增加医疗系统协调难度和工作负担[4]。因此,对于蛛网膜下腔出血预后的研究愈发重要。深入探究动脉瘤性蛛网膜下腔出血预后的影响因素(如早期干预时机、生物标志物预测价值、多模态监测策略),不仅能优化个体化治疗决策,还可为精准预后模型的开发提供依据。因此,本文将系统梳理aSAH预后的核心影响因素、评估工具及干预策略,深入剖析其临床应用价值,为临床实践提供精准且切实可行的指导策略,最大程度地优化患者预后,提升患者的生活质量。

本研究系统检索了2004~2024年PubMed、Web of Science、Embase及Cochrane Library数据库,以“aneurysmal subarachnoid hemorrhage”、“aSAH”为核心,联合布尔逻辑运算符(AND/OR/NOT)组合预后相关关键词(如“Genetic Susceptibility”、“Pathophysiology”、“Prognosis”、“Predictive Model”、“Biomarker”),并采用截词符扩展检索(如prognos覆盖prognosis/prognostic)。限定标题/摘要字段及英文文献,排除个案报告、动物实验及非同行评议研究。初筛获得1280篇文献,经EndNote去重后保留950篇,通过标题/摘要排除非相关研究(620篇),全文评估后纳入85篇核心文献(含RCT、队列研究及指南),同时通过引文追踪(Scopus“Cited by”功能)及灰色文献(ClinicalTrials.gov、国际会议摘要)补充15篇。最终整理获取覆盖遗传和病理机制、治疗干预、预后评估工具及预测模型等核心主题的内容。

2. 理论

2.1. 遗传学机制

aSAH的遗传学机制是神经科学领域的研究热点。尽管环境风险因素(如高血压、吸烟)在动脉瘤发生发展中起主导作用,但遗传背景对疾病易感性的调控作用逐渐被揭示。研究表明,约18%的aSAH病例存在家族聚集现象,提示遗传变异可能通过改变血管稳态相关通路(如细胞外基质重塑、血管平滑肌功能及炎症调控)增加发病风险[5]。目前已识别出两类关键遗传因素:单基因致病突变和多基因风险位点。单基因方面,COL3A1基因突变导致的III型胶原缺陷与血管型Ehlers-Danlos综合征相关,这类患者发生颅内动脉瘤的风险较普通人群显著升高[6] [7]。ACTA2基因编码的α-平滑肌肌动蛋白突变可通过破坏血管收缩功能促进颅内动脉瘤形成[8]。多基因层面,GWAS研究发现了19个显著性风险位点,其中SOX17、CDKN2B-AS1和EDNRA等位点通过调控内皮细胞增殖、细胞周期抑制和血管张力维持参与病理过程[9]。表观遗传调控为颅内动脉瘤遗传易感性提供了新视角。有研究发现,表观遗传机制(DNA甲基化、非编码RNA、组蛋白修饰)通过调控血管平滑肌功能、炎症反应和细胞外基质代谢,显著影响IA和aSAH的遗传易感性[10]。这些进展为高危人群的靶向筛查和个性化干预奠定了分子基础。

2.2. 病理生理学

在生理状态下,颅内动脉血管壁通过完整的三层结构(内膜、中膜及外膜)维持力学稳定性,能够有效抵御生理性血流剪切力。颅内动脉瘤形成过程中,血管壁因局部中膜平滑肌缺失、弹力板断裂等发育异常(如先天性中膜缺损)或获得性内皮损伤,导致管壁结构完整性破坏[11]。此类病理状态下,长期暴露于高血压、异常血流动力学应力(如分叉处湍流剪切力)及炎症微环境等因素,可加速瘤壁胶原重塑失衡与细胞外基质降解,促使动脉瘤的发生和进展。当瘤壁机械强度不足以对抗持续性血流冲击时,最终发生破裂并引发蛛网膜下腔出血。动脉瘤破裂后,血液迅速涌入蛛网膜下腔,这些血液中的成分会对蛛网膜下腔产生强烈刺激。红细胞破裂后释放血红蛋白,其进一步代谢产物如氧合血红蛋白、高铁血红蛋白等具有神经毒性,可直接损伤脑膜及脑血管内皮细胞[12]。同时,血小板等成分会激活凝血系统和炎症反应,炎症细胞浸润并释放白细胞介素、肿瘤坏死因子等炎症介质,引发化学性脑膜炎,导致患者出现剧烈头痛、恶心、呕吐等症状[13] [14]。大量血液进入蛛网膜下腔使颅内压急剧升高,压迫脑组织,导致脑灌注不足,引发脑缺血缺氧损伤。血液成分刺激血管平滑肌细胞内钙离子浓度升高,使血管持续收缩;炎症介质又打破血管内皮舒张因子(如一氧化氮)和收缩因子(如内皮素)的平衡,促进血管收缩,导致脑血流量减少,引发迟发性脑缺血,严重时可发展为脑梗死[15]

2.3. 临床表现

aSAH起病急骤,病情发展迅速且严重。临床表现主要包括以下几个方面:1. 头痛:最为常见且突出的症状,常被描述为“一生中最剧烈的头痛”。大约90%以上患者诉突发“爆炸样或撕裂样”头痛,疼痛部位多在前额、枕部或全头部。这是由于血液刺激脑膜,引发脑膜炎症反应所致[14]。2. 意识障碍:大约30%~50%的患者在发病初期会出现意识障碍,轻者表现为嗜睡、昏睡,重者可迅速陷入昏迷。意识障碍的发生与出血的量、速度以及对脑组织的压迫程度有关。大量出血时,颅内压急剧升高,导致脑灌注不足,引起脑组织缺血缺氧,从而出现意识改变[16]。3. 脑膜刺激征:包括颈项强直、Kernig征和Brudzinski征阳性,是由于血液刺激脑膜和神经根,导致肌肉痉挛和神经反射异常。4. 眼部症状:部分患者可出现眼部症状,如视网膜出血、视乳头水肿等。视网膜出血可能与颅内压升高导致的眼底静脉回流受阻有关。少数患者还可能出现动眼神经麻痹,表现为眼睑下垂、瞳孔散大、眼球活动受限等,这通常提示动脉瘤位于后交通动脉附近,压迫了动眼神经[17]。5. 其他症状:还可能伴有恶心、呕吐,这与颅内压升高刺激呕吐中枢有关;部分患者会出现精神症状,如烦躁不安、谵妄、抑郁等;也可能出现局灶性神经功能缺损症状,如偏瘫、失语、偏身感觉障碍等,这取决于出血的部位和范围,以及是否引起脑血管痉挛导致局部脑组织缺血[17]

2.4. 诊断与治疗

aSAH的诊断需要结合临床表现和影像学检查。aSAH的典型临床特征为突发性“爆炸样头痛”,常伴恶心呕吐、畏光及短暂意识丧失。影像学检查中,头部CT平扫是急性期(3天内)首选,其敏感度接近100%,5~7天后敏感度急剧下降,需结合腰椎穿刺检测脑脊液性质。MRI(FLAIR、GRE序列)对CT阴性但临床可疑病例具有辅助价值,但对中脑周围型aSAH的诊断效能仍存争议。DSA全脑血管造影作为动脉瘤诊断金标准,可精准评估动脉瘤形态及血管痉挛,尤其适用于CTA结果不确定或复杂病例,三维旋转技术可提升微小动脉瘤检出率。头部CTA能快速筛查动脉瘤(敏感度 > 95%),但对<3 mm的微小动脉瘤检测可靠性不足,在血管迂曲患者中可能替代DSA。新兴技术如双能量CTA可优化动脉瘤显影,但临床尚未普及[18]

aSAH的治疗以预防再出血、控制并发症为核心目标。预防再出血的主要治疗手段包括血管内弹簧圈栓塞术和神经外科夹闭术。前者经股动脉或桡动脉建立血管通路,向动脉瘤腔内置入金属弹簧圈促进血栓形成;后者通过开颅手术夹闭动脉瘤颈。此外,还需控制收缩压 < 140 mmHg (可降低再出血风险30%),避免剧烈血压波动,适当予以镇痛镇静药物减少颅内压波动[19]。控制并发症的治疗主要包括:1. 使用尼莫地平预防脑血管痉挛和迟发性脑缺血;2. 急性脑积水需紧急行脑室外引流(External ventricular drainage, EVD)或腰大池引流,慢性脑积水则行脑室–腹腔分流(ventriculoperitoneal shunt, VPS);3. 预防性使用左乙拉西坦抗癫痫;4. 限水联合高渗盐水纠正低钠血症(脑耗盐综合征),避免过快补钠导致脑桥中央髓鞘溶解[20]

2.5. 预后

aSAH是一种致死率、致残率极高的神经血管急症,其病理生理过程与预后密切相关。流行病学数据显示,大约10%~15%的患者在入院前即因动脉瘤破裂后颅内压(intracranial pressure, ICP)骤升引发脑疝而死亡,20%~30%的患者于发病后早期死于不可逆性早期脑损伤(early brain injury, EBI)或再出血[21]。存活者中,超过50%的患者遗留严重神经功能障碍,致残率显著高于其他类型卒中[22]。神经功能障碍包括:1. 认知损害:约40%~60%患者出现执行功能、工作记忆及信息处理速度下降,可能与海马区微梗死及皮质–皮质下网络连接中断相关[23]。2. 运动障碍:30%~50%患者存在偏瘫或共济失调,常见于大脑中动脉瘤破裂继发脑实质血肿者[24]。3. 语言功能障碍:前循环动脉瘤破裂可导致Broca型或Wernicke型失语,发生率约15%~25% [19]。4. 癫痫发作:急性期癫痫发生率约20%,远期癫痫风险增加3~5倍,与脑皮质含铁血黄素沉积相关[25]。此外,还有长期并发症的存在影响患者的结局:1. 慢性脑积水:9%~36%的动脉瘤性蛛网膜下腔出血的患者会发生慢性脑积水,需行永久性脑脊液分流[26]。2. 迟发性脑缺血(delayed cerebral ischemia, DCI):这是由血管痉挛介导的脑梗死,会加重患者的神经功能缺损,是致残的关键继发性机制[27]

3. 研究现状

3.1. 预后影响因素

aSAH的临床结局受患者基线特征、疾病特征、治疗因素以及并发症等多种因素共同影响。这些因素相互作用,决定了患者的短期生存率与长期功能恢复情况。

患者基线特征方面,年龄增长对aSAH患者预后影响显著。患者年龄每增加10岁,死亡率上升约30%,老年患者(>65岁)功能预后显著更差[22]。高血压会损害血管内皮,增加动脉瘤破裂风险,加重出血及脑血管痉挛,提升死亡率和迟发性脑缺血等并发症发生率[28]。糖尿病可能通过影响血管痉挛的发生、增加感染风险以及干扰脑部代谢等途径,对aSAH患者的病情和预后产生不良作用。吸烟损害血管内皮,促进动脉粥样硬化,增加破裂和再出血风险,恶化神经功能预后,提高患者死亡率[29] [30]。此外,高血脂、心脏病等合并症也影响aSAH结局,具体机制尚待明确。上述合并症通过内皮损伤、微循环障碍、炎症激活等机制影响aSAH预后,其具体交互效应仍需多组学研究进一步阐明。临床需重视共病管理(如强化血压控制、戒烟干预)以改善结局。

从疾病特征来看,出血严重度与不良预后密切相关。有研究发现,mFisher 4级患者发生DCI的风险显著高于改良Fisher 0~1级患者。这意味着蛛网膜下腔出血量较大,血液及其分解产物会对脑血管产生刺激,引发血管痉挛,进而影响脑部血液供应,增加DCI的发生风险,导致患者预后不良[31]。世界神经外科联合会分级(World Federation of Neurological Societies Scale, WFNS) IV~V级(昏迷状态)患者死亡率高达50%~70%,3个月功能独立(mRS ≤ 2)率不到20%,远低于WFNS Ⅰ~Ⅲ级患者的65% [32]。动脉瘤位置和大小也影响预后,后循环动脉瘤(如基底动脉)破裂后死亡率(45%)显著高于前循环(25%),且更易并发脑干损伤[33]。较大的动脉瘤与较差的预后相关,直径10~19.9 mm的动脉瘤,其导致不良预后的调整优势比(aOR)为1.6 (95% CI 1.0~2.7);直径 > 20 mm的动脉瘤,aOR高达8.0 (95% CI 2.3~27.5)。这表明动脉瘤越大,患者在aSAH后出现不良功能结局(改良Rankin量表评分4~6分)的风险越高[34]

aSAH患者预后与治疗因素及并发症紧密相关。发病后24小时内行颅内动脉瘤闭塞术(夹闭或栓塞)可降低再出血率,并改善1年预后[18]。血管内栓塞术与开颅瘤颈夹闭术相比,1年良好预后率更高,但5年再出血风险增加,治疗方式的选择需个体化权衡[33]。并发症对aSAH患者预后有极大影响,DCI是aSAH后发生的多因素缺血事件,广泛称为临床或症状性血管痉挛,见于17%至40%的aSAH患者,并导致临床结局恶化[35]-[37]。口服尼莫地平可以改善临床结果并减少血管痉挛相关的梗死,但对血管痉挛的影像学未见明显改善[38]。aSAH后脑积水导致很多患者遗留认知障碍,急性脑积水需立即行脑室外引流(EVD),慢性脑积水行脑室腹腔分流,以减轻脑积水所导致的认知障碍。低钠血症(血钠 < 135 mmol/L)与脑耗盐综合征相关,不仅延长了患者ICU住院时间并加重脑水肿,还增加了不良预后发生的概率。另外,早期的康复治疗包括肢体及认知康复,可能会改善患者的预后。

3.2. 评估工具进展

aSAH的临床管理高度依赖标准化评估工具。格拉斯哥昏迷量表(Glasgow Coma Scale, GCS)通过量化患者睁眼、语言及运动反应(评分范围3~15分),可快速识别意识障碍程度,为急性期治疗决策提供关键依据[39]。世界神经外科联合会分级(WFNS)整合GCS评分与局灶性神经功能缺损,将患者分为I~V级(I级:GCS 15分无运动障碍;V级:GCS 3~6分伴运动障碍)。有研究表明,其预测30天死亡率的曲线下面积(AUC)达0.82 [32]。然而,此类工具对认知功能恢复、生活质量等长期预后维度敏感度不足,存在评估盲区。

近年来,随着神经监测技术的革新,近红外光谱技术(Near-Infrared Spectroscopy, NIRS)通过动态监测脑组织氧合指数(Tissue Oxygenation Index, TOI)与血红蛋白浓度变化,可实时识别脑氧供需失衡。相关研究表明,在aSAH患者中应用NIRS,能够及时发现脑缺血风险,为早期干预提供关键信息,从而改善患者的预后[40]。这一技术的应用,使得对患者脑部功能的实时监测更加便捷和准确。此外,脑微透析技术通过检测细胞外液乳酸/丙酮酸比值(LPR > 40提示能量代谢危机),为继发性脑损伤提供分子层面预警[41]

在功能评估领域,日常生活能力评估工具得到了进一步的发展和应用。巴塞尔指数(Barthel Index, BI)和功能独立性测量(Functional Independence Measure, FIM)通过对患者进食、穿衣、洗漱、如厕等日常生活的细致评估,能够准确反映患者的自理能力[42] [43]。这些评估结果对于制定个性化的康复计划以及判断患者的预后具有重要意义。例如,通过对患者巴塞尔指数得分的动态监测,康复团队可以及时调整康复训练方案,提高康复效果。

认知功能评估也是aSAH结局评估的重要组成部分。蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)和简易精神状态检查表(Mini-Mental State Examination, MMSE)在临床实践中被广泛用于筛查aSAH后的认知障碍[44] [45]。MoCA涵盖了注意力、记忆力、语言能力等多个认知领域,能够更全面地检测出患者的认知功能变化。MMSE则具有操作简便、耗时短的优势,适用于在不同场景下对患者进行初步的认知功能筛查。通过这些工具的应用,能够早期发现患者的认知问题,并及时开展针对性的干预措施,有助于改善患者的生活质量。

影像学评估工具在aSAH结局评估中同样取得了显著进展。CT三维血管成像(CTA)和磁共振血管成像(MRA)不仅可以清晰地显示动脉瘤的形态、位置和大小,还能够对血管痉挛的情况进行有效评估。此外,功能影像学技术如灌注加权成像(PWI)和弥散张量成像(DTI),能够提供脑血流灌注、神经纤维完整性等方面的详细信息,为判断脑组织的损伤程度和预后提供了更精准的依据。

尽管aSAH结局评估工具取得了诸多进展,但目前仍面临一些挑战。例如,不同评估工具的结果如何更好地整合,以实现更全面、准确的评估;如何克服个体差异对评估结果的影响等。未来,需要进一步优化现有评估工具,并不断探索新的评估指标和方法,以实现更精准的个性化评估和治疗,为aSAH患者带来更好的预后。

3.3. 预测模型

aSAH结局预测模型研究不断发展,传统临床评分系统如Hunt-Hess评分、WFNS分级和SAHIT评分等。基于人口学特征、临床分级及影像学参数构建,为早期风险分层提供了基础。传统评分系统存在局限性,如Hunt-Hess评分未纳入影像学参数,对DCI预测效能有限;WFNS分级无法区分中重度残疾(如mRS 3~4分);SAHIT评分未包含生物标志物或动态监测数据[32] [46] [47]。生物标志物驱动模型通过血清与脑脊液生物标志物量化神经损伤机制提升预测精度,如GFAP值在良好结局组和不良结局组之间差异显著,可以用来预测aSAH患者的预后[48]。影像组学与机器学习模型基于影像特征定量分析突破传统局限。CTA影像组学模型提取动脉瘤形态与出血分布特征预测再出血风险;UIA-SPH模型结合CTA组学与WFNS分级对不良预后的预测;功能MRI联合深度学习基于DTI白质纤维束完整性与静息态fMRI功能连接预测运动功能恢复。不过现有模型存在多基于单中心回顾性数据、外部验证率不足以及生物标志物检测标准化缺失等问题。因此,需要更多的、更全面的预测模型来评估aSAH患者的结局,为临床治疗和患者预后提供指导。未来可通过多模态融合(临床表现、生物标志物、营养状况与影像组学构建综合模型)和动态自适应预测(基于强化学习算法实时优化模型权重)等方向取得突破。

4. 研究的挑战与争议

aSAH结局的研究在不断发展,但仍面临诸多挑战和争议。在预测模型方面,现有模型多基于单中心回顾性数据,外部验证率不足。例如广泛应用的SAHIT模型,仅在欧美人群中进行过验证,其在不同种族、地域人群中的适用性存疑。生物标志物检测缺乏标准化,检测胶质纤维酸性蛋白(GFAP)时,不同试剂盒检测结果差异大,这使得基于生物标志物的预测模型准确性受到影响。治疗方案的选择上也存在诸多争议。在动脉瘤处理前,最佳血压管理尚无定论。目前缺乏建议特定降压目标的高质量证据,虽应避免血压极值和显著变异性,但具体降压范围不明确,不同医疗机构的做法差异较大。对于动脉瘤处理的时机,虽然破裂动脉瘤需尽快保护,但立即(<6小时)处理策略的益处尚未得到充分证明,多数中心选择在24小时内尽快治疗,但这种选择的最优性仍有探讨空间。药物治疗方面,静脉注射尼莫地平的作用存在争议。口服/肠内尼莫地平被建议用于改善神经系统结果,但静脉给药会导致更频繁的低血压发作,目前虽有研究表明静脉注射并不劣于口服/肠内给予,但临床实践中更主张口服/肠内给药[49]。抗纤维蛋白溶解疗法如氨甲环酸,早期研究显示其可减少再出血,但长期使用会增加DCI风险。近期大型随机对照试验(RCT)发现其超早期和短期治疗在最终结局上无差异,导致其不再广泛使用[50]。并发症管理同样面临挑战。脑积水是aSAH常见并发症,但其发生机制尚未完全明确,相关生物标志物和影像学特征的预测作用仍需进一步研究。对于DCI的管理,血流动力学维持和血容量控制的具体方法和效果也有待深入探讨。此外,aSAH常伴随多器官系统并发症,目前缺乏标准化的管理方案,不同医院的处理方式差异明显,影响患者的预后。

5. 结论

aSAH作为神经外科急症,其结局受多维度因素动态影响,包括患者基线特征、动脉瘤解剖特性、治疗策略及并发症管理等。近年来,随着血管内介入技术、多模态监测及精准医学的发展,aSAH患者的生存率与功能预后显著改善,但其高致残性仍是临床重大挑战。EBI与DCI是动脉瘤性蛛网膜下腔出血后继发性脑损伤的核心机制。针对神经炎症、氧化应激及微循环障碍的干预(如尼莫地平)可降低DCI发生率,但仍需探索更精准的神经保护策略。血管内栓塞术的短期预后优势与长期再出血风险需个体化权衡,后循环动脉瘤及高龄患者优先选择栓塞。早期康复治疗可改善患者肢体活动及认知功能预后。传统评估量表如Hunt-Hess评分、WFNS分级和SAHIT评分等,均存在相应的局限性。长期认知衰退(>5年)及心理后遗症(如创伤后应激障碍)研究匮乏,缺乏跨学科追踪数据。脑积水与DCI的分子机制尚未完全阐明,靶向治疗的研究受阻。aSAH的临床管理已从“挽救生命”转向“改善功能与生活质量”,但实现这一目标需克服方法学局限、治疗争议及数据碎片化挑战。因此,未来可以建立全球多中心队列,纳入种族、地域多样性数据,研发更全面的预测模型,为aSAH患者的诊断和治疗提供依据。未来通过多中心协作、精准医学策略及动态监测技术突破现有局限,实现个体化全周期管理,改善患者功能与生活质量。

NOTES

*通讯作者。

参考文献

[1] Diringer, M.N. (2009) Management of Aneurysmal Subarachnoid Hemorrhage. Critical Care Medicine, 37, 432-440.
https://doi.org/10.1097/ccm.0b013e318195865a
[2] Petridis, A.K., Kamp, M.A., Cornelius, J.F., Beez, T., Beseoglu, K., Turowski, B., et al. (2017) Aneurysmal Subarachnoid Hemorrhage. Deutsches Ärzteblatt international, 114, 226-236.
https://doi.org/10.3238/arztebl.2017.0226
[3] Greebe, P., Rinkel, G.J.E., Hop, J.W., Visser-Meily, J.M.A. and Algra, A. (2010) Functional Outcome and Quality of Life 5 and 12.5 Years after Aneurysmal Subarachnoid Haemorrhage. Journal of Neurology, 257, 2059-2064.
https://doi.org/10.1007/s00415-010-5660-y
[4] Thompson, J.C., Chalet, F., Manalastas, E.J., Hawkins, N., Sarri, G. and Talbot, D.A. (2022) Economic and Humanistic Burden of Cerebral Vasospasm and Its Related Complications after Aneurysmal Subarachnoid Hemorrhage: A Systematic Literature Review. Neurology and Therapy, 11, 597-620.
https://doi.org/10.1007/s40120-022-00348-6
[5] Vlak, M.H.M., Rinkel, G.J.E., Greebe, P. and Algra, A. (2013) Independent Risk Factors for Intracranial Aneurysms and Their Joint Effect. Stroke, 44, 984-987.
https://doi.org/10.1161/strokeaha.111.000329
[6] Byers, P.H., Belmont, J., Black, J., De Backer, J., Frank, M., Jeunemaitre, X., et al. (2017) Diagnosis, Natural History, and Management in Vascular Ehlers-Danlos Syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 175, 40-47.
https://doi.org/10.1002/ajmg.c.31553
[7] Shalhub, S., Black, J.H., Cecchi, A.C., Xu, Z., Griswold, B.F., Safi, H.J., et al. (2014) Molecular Diagnosis in Vascular Ehlers-Danlos Syndrome Predicts Pattern of Arterial Involvement and Outcomes. Journal of Vascular Surgery, 60, 160-169.
https://doi.org/10.1016/j.jvs.2014.01.070
[8] Wen, D., Wang, X., Chen, R., Li, H., Zheng, J., Fu, W., et al. (2022) Single-Cell RNA Sequencing Reveals the Pathogenic Relevance of Intracranial Atherosclerosis in Blood Blister-Like Aneurysms. Frontiers in Immunology, 13, Article 927125.
https://doi.org/10.3389/fimmu.2022.927125
[9] Bakker, M.K., Van der Spek, R.A.A., Van Rheenen, W., et al. (2020) Genome-Wide Association Study of Intracranial Aneurysms Identifies 17 Risk Loci and Genetic Overlap with Clinical Risk Factors. Nature Genetics, 52, 1303-1313.
[10] Fernández-Pérez, I., Macias-Gómez, A., Suárez-Pérez, A., Vallverdú-Prats, M., Giralt-Steinhauer, E., Bojtos, L., et al. (2024) The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review. International Journal of Molecular Sciences, 25, Article 3433.
https://doi.org/10.3390/ijms25063433
[11] Macdonald, R.L. and Schweizer, T.A. (2017) Spontaneous Subarachnoid Haemorrhage. The Lancet, 389, 655-666.
https://doi.org/10.1016/s0140-6736(16)30668-7
[12] Xi, G., Keep, R.F. and Hoff, J.T. (2006) Mechanisms of Brain Injury after Intracerebral Haemorrhage. The Lancet Neurology, 5, 53-63.
https://doi.org/10.1016/s1474-4422(05)70283-0
[13] Frontera, J.A., Provencio, J.J., Sehba, F.A., McIntyre, T.M., Nowacki, A.S., Gordon, E., et al. (2017) The Role of Platelet Activation and Inflammation in Early Brain Injury Following Subarachnoid Hemorrhage. Neurocritical Care, 26, 48-57.
https://doi.org/10.1007/s12028-016-0292-4
[14] Sorrentino, Z.A., Laurent, D., Hernandez, J., Davidson, C., Small, C., Dodd, W., et al. (2022) Headache Persisting after Aneurysmal Subarachnoid Hemorrhage: A Narrative Review of Pathophysiology and Therapeutic Strategies. Headache: The Journal of Head and Face Pain, 62, 1120-1132.
https://doi.org/10.1111/head.14394
[15] Osgood, M.L. (2021) Aneurysmal Subarachnoid Hemorrhage: Review of the Pathophysiology and Management Strategies. Current Neurology and Neuroscience Reports, 21, Article No. 50.
https://doi.org/10.1007/s11910-021-01136-9
[16] Suwatcharangkoon, S., Meyers, E., Falo, C., Schmidt, J.M., Agarwal, S., Claassen, J., et al. (2016) Loss of Consciousness at Onset of Subarachnoid Hemorrhage as an Important Marker of Early Brain Injury. JAMA Neurology, 73, 28-35.
https://doi.org/10.1001/jamaneurol.2015.3188
[17] Cianfoni, A., Pravatà, E., De Blasi, R., Tschuor, C.S. and Bonaldi, G. (2013) Clinical Presentation of Cerebral Aneurysms. European Journal of Radiology, 82, 1618-1622.
https://doi.org/10.1016/j.ejrad.2012.11.019
[18] Connolly, E.S., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., et al. (2012) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 43, 1711-1737.
https://doi.org/10.1161/str.0b013e3182587839
[19] Diringer, M.N., Bleck, T.P., Claude Hemphill, J., Menon, D., Shutter, L., Vespa, P., et al. (2011) Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocritical Care, 15, 211-240.
https://doi.org/10.1007/s12028-011-9605-9
[20] Shah, K., Turgeon, R.D., Gooderham, P.A. and Ensom, M.H.H. (2018) Prevention and Treatment of Hyponatremia in Patients with Subarachnoid Hemorrhage: A Systematic Review. World Neurosurgery, 109, 222-229.
https://doi.org/10.1016/j.wneu.2017.09.182
[21] Van Gijn, J., Kerr, R.S. and Rinkel, G.J. (2007) Subarachnoid Haemorrhage. The Lancet, 369, 306-318.
https://doi.org/10.1016/s0140-6736(07)60153-6
[22] Nieuwkamp, D.J., Setz, L.E., Algra, A., Linn, F.H., de Rooij, N.K. and Rinkel, G.J. (2009) Changes in Case Fatality of Aneurysmal Subarachnoid Haemorrhage over Time, According to Age, Sex, and Region: A Meta-Analysis. The Lancet Neurology, 8, 635-642.
https://doi.org/10.1016/s1474-4422(09)70126-7
[23] Al-Khindi, T., Macdonald, R.L. and Schweizer, T.A. (2010) Cognitive and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Stroke, 41, e519-e536.
https://doi.org/10.1161/strokeaha.110.581975
[24] Passier, P.E.C.A., Visser-Meily, J.M.A., van Zandvoort, M.J.E., Post, M.W.M., Rinkel, G.J.E. and van Heugten, C. (2010) Prevalence and Determinants of Cognitive Complaints after Aneurysmal Subarachnoid Hemorrhage. Cerebrovascular Diseases, 29, 557-563.
https://doi.org/10.1159/000306642
[25] Claassen, J., Jetté, N., Chum, F., Green, R., Schmidt, M., Choi, H., et al. (2007) Electrographic Seizures and Periodic Discharges after Intracerebral Hemorrhage. Neurology, 69, 1356-1365.
https://doi.org/10.1212/01.wnl.0000281664.02615.6c
[26] Paisan, G.M., Ding, D., Starke, R.M., Crowley, R.W. and Liu, K.C. (2018) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage: Predictors and Long-Term Functional Outcomes. Neurosurgery, 83, 393-402.
https://doi.org/10.1093/neuros/nyx393
[27] Macdonald, R.L., Pluta, R.M. and Zhang, J.H. (2007) Cerebral Vasospasm after Subarachnoid Hemorrhage: The Emerging Revolution. Nature Clinical Practice Neurology, 3, 256-263.
https://doi.org/10.1038/ncpneuro0490
[28] Etminan, N., Chang, H., Hackenberg, K., de Rooij, N.K., Vergouwen, M.D.I., Rinkel, G.J.E., et al. (2019) Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population. JAMA Neurology, 76, 588-597.
https://doi.org/10.1001/jamaneurol.2019.0006
[29] Brown, R.D. and Broderick, J.P. (2014) Unruptured Intracranial Aneurysms: Epidemiology, Natural History, Management Options, and Familial Screening. The Lancet Neurology, 13, 393-404.
https://doi.org/10.1016/s1474-4422(14)70015-8
[30] Lindbohm, J.V., Kaprio, J. and Korja, M. (2019) Survival Bias Explains Improved Survival in Smokers and Hypertensive Individuals after aSAH. Neurology, 93, e2105-e2109.
https://doi.org/10.1212/wnl.0000000000008537
[31] Lee, H., Perry, J.J., English, S.W., Alkherayf, F., Joseph, J., Nobile, S., et al. (2019) Clinical Prediction of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 130, 1914-1921.
https://doi.org/10.3171/2018.1.jns172715
[32] Rosen, D.S. and Macdonald, R.L. (2005) Subarachnoid Hemorrhage Grading Scales: A Systematic Review. Neurocritical Care, 2, 110-118.
https://doi.org/10.1385/ncc:2:2:110
[33] Molyneux, A.J., Kerr, R.S., Yu, L., Clarke, M., Sneade, M., Yarnold, J.A., et al. (2005) International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups, and Aneurysm Occlusion. The Lancet, 366, 809-817.
https://doi.org/10.1016/s0140-6736(05)67214-5
[34] van Donkelaar, C.E., Bakker, N.A., Birks, J., Veeger, N.J.G.M., Metzemaekers, J.D.M., Molyneux, A.J., et al. (2019) Prediction of Outcome after Aneurysmal Subarachnoid Hemorrhage. Stroke, 50, 837-844.
https://doi.org/10.1161/strokeaha.118.023902
[35] Weir, B., Grace, M., Hansen, J. and Rothberg, C. (1978) Time Course of Vasospasm in Man. Journal of Neurosurgery, 48, 173-178.
https://doi.org/10.3171/jns.1978.48.2.0173
[36] Vergouwen, M.D.I., Vermeulen, M., van Gijn, J., Rinkel, G.J.E., Wijdicks, E.F., Muizelaar, J.P., et al. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies. Stroke, 41, 2391-2395.
https://doi.org/10.1161/strokeaha.110.589275
[37] Dodd, W.S., Laurent, D., Dumont, A.S., Hasan, D.M., Jabbour, P.M., Starke, R.M., et al. (2021) Pathophysiology of Delayed Cerebral Ischemia after Subarachnoid Hemorrhage: A Review. Journal of the American Heart Association, 10, e021845.
https://doi.org/10.1161/jaha.121.021845
[38] Carlson, A.P., Hänggi, D., Macdonald, R.L. and Shuttleworth, C.W. (2020) Nimodipine Reappraised: An Old Drug with a Future. Current Neuropharmacology, 18, 65-82.
https://doi.org/10.2174/1570159x17666190927113021
[39] Teasdale, G. and Jennett, B. (1974) Assessment of Coma and Impaired Consciousness. The Lancet, 304, 81-84.
https://doi.org/10.1016/s0140-6736(74)91639-0
[40] Uryga, A., Nasr, N., Kasprowicz, M., Woźniak, J., Goździk, W. and Burzyńska, M. (2022) Changes in Autonomic Nervous System during Cerebral Desaturation Episodes in Aneurysmal Subarachnoid Hemorrhage. Autonomic Neuroscience, 239, Article 102968.
https://doi.org/10.1016/j.autneu.2022.102968
[41] Helbok, R., Schiefecker, A.J., Beer, R., Dietmann, A., Antunes, A.P., Sohm, F., et al. (2015) Early Brain Injury after Aneurysmal Subarachnoid Hemorrhage: A Multimodal Neuromonitoring Study. Critical Care, 19, Article No. 75.
https://doi.org/10.1186/s13054-015-0809-9
[42] Mocco, J., Ransom, E.R., Komotar, R.J., Sergot, P.B., Ostapkovich, N., Schmidt, J.M., et al. (2006) Long-Term Domain-Specific Improvement Following Poor Grade Aneurysmal Subarachnoid Hemorrhage. Journal of Neurology, 253, 1278-1284.
https://doi.org/10.1007/s00415-006-0179-y
[43] Lee, H.S., Sohn, M.K., Lee, J., Kim, D.Y., Shin, Y., Oh, G., et al. (2025) Long-Term Functional Outcomes among Patients Surviving Aneurysmal Subarachnoid Hemorrhage: The KOSCO Study. International Journal of Stroke.
https://doi.org/10.1177/17474930251320566
[44] Wong, G.K.C., Lam, S., Ngai, K., Wong, A., Mok, V. and Poon, W.S. (2012) Evaluation of Cognitive Impairment by the Montreal Cognitive Assessment in Patients with Aneurysmal Subarachnoid Haemorrhage: Prevalence, Risk Factors and Correlations with 3 Month Outcomes. Journal of Neurology, Neurosurgery & Psychiatry, 83, 1112-1117.
https://doi.org/10.1136/jnnp-2012-302217
[45] Wong, G.K.C., Lam, S.W., Wong, A., Lai, M., Siu, D., Poon, W.S., et al. (2014) MoCA‐Assessed Cognitive Function and Excellent Outcome after Aneurysmal Subarachnoid Hemorrhage at 1 Year. European Journal of Neurology, 21, 725-730.
https://doi.org/10.1111/ene.12363
[46] Hunt, W.E. and Hess, R.M. (1968) Surgical Risk as Related to Time of Intervention in the Repair of Intracranial Aneurysms. Journal of Neurosurgery, 28, 14-20.
https://doi.org/10.3171/jns.1968.28.1.0014
[47] Jaja, B.N.R., Saposnik, G., Lingsma, H.F., et al. (2018) Development and Validation of Outcome Prediction Models for Aneurysmal Subarachnoid Haemorrhage: The SAHIT Multinational Cohort Study. The BMJ, 360, j5745.
[48] Petzold, A., Keir, G., Kerr, M., Kay, A., Kitchen, N., Smith, M., et al. (2006) Early Identification of Secondary Brain Damage in Subarachnoid Hemorrhage: A Role for Glial Fibrillary Acidic Protein. Journal of Neurotrauma, 23, 1179-1184.
https://doi.org/10.1089/neu.2006.23.1179
[49] Geraldini, F., De Cassai, A., Diana, P., Correale, C., Boscolo, A., Zampirollo, S., et al. (2022) A Comparison between Enteral and Intravenous Nimodipine in Subarachnoid Hemorrhage: A Systematic Review and Network Meta-Analysis. Neurocritical Care, 36, 1071-1079.
https://doi.org/10.1007/s12028-022-01493-4
[50] Tjerkstra, M.A., Post, R., Germans, M.R., Vergouwen, M.D.I., Jellema, K., Koot, R.W., et al. (2024) Ultra-Early and Short-Term Tranexamic Acid Treatment in Patients with Good-and Poor-Grade Aneurysmal Subarachnoid Hemorrhage. Neurology, 102, e209169.
https://doi.org/10.1212/wnl.0000000000209169