帕金森病与心率变异性关系的Meta分析
A Meta-Analysis of the Relationship between Parkinson’s Disease and Heart Rate Variability
DOI: 10.12677/acm.2025.1541223, PDF, HTML, XML,   
作者: 刘致春, 吴佳和, 姜雨希:黑龙江中医药大学研究生院,黑龙江 哈尔滨;程为平*:黑龙江中医药大学附属第一医院针灸二科,黑龙江 哈尔滨
关键词: 帕金森病心率变异性Meta分析Parkinson’s Disease Heart Rate Variability Meta-Analysis
摘要: 目的:探讨帕金森病(PD)与心脏自主神经功能损伤的相关性。方法:计算机检索Pubmed、Embase、Cochrane Library、Web of Science、中国知网(CNKI)、万方(Wanfang)、维普(VIP)数据库,检索时限均为建库至2023年11月25日。由2位评价员独立筛选文献、提取资料并评价纳入研究的偏倚风险后,采用RevMan 5.4软件和Stata软件进行Meta分析。结果:共纳入17项研究,包括404例患者和430例健康对照。Meta分析结果显示:PD患者的HF [SMD: −0.28, CI (−0.53, −0.03), P = 0.03]、TP [SMD: −1.31, CI (−1.74, −0.88), P < 0.001]、RMSSD [SMD: −0.84, CI (−1.06, −0.62), P < 0.001]、SDNN [SMD:−0.45, CI (−0.70, −0.21), P < 0.001]、pNN50 [SMD: −1.21, CI (−2.29, −0.13), P = 0.03]均低于对照组,而两组在LF [SMD: −0.17, CI (−0.55, 0.22), P = 0.40]和LF/HF [SMD: 0.04, CI (−0.54, 0.62), P = 0.10]的差异无统计学意义。结论:PD患者的HRV明显低于正常健康人,表明PD与心脏自主神经损伤存在联系。
Abstract: Objective: To explore the correlation between Parkinson’s disease (PD) and cardiac autonomic nerve function damage. Methods: Computerized searches were conducted in Pubmed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang, and VIP databases from their inception to November 25, 2023. Two reviewers independently screened the literature, extracted data, and evaluated the risk of bias in the included studies. Meta-analysis was performed using RevMan 5.4 and Stata software. Results: A total of 17 studies were included, involving 404 patients with PD and 430 healthy controls. The meta-analysis results showed that the HF [SMD: −0.28, CI (−0.53, −0.03), P = 0.03], TP [SMD: −1.31, CI (−1.74, −0.88), P < 0.001], RMSSD [SMD: −0.84, CI (−1.06, −0.62), P < 0.001], SDNN [SMD: −0.45, CI (−0.70, −0.21), P < 0.001], and pNN50 [SMD: −1.21, CI (−2.29, −0.13), P = 0.03] of patients with PD were all lower than those of the control group, while there was no statistically significant difference in LF [SMD: −0.17, CI (−0.55, 0.22), P = 0.40] and LF/HF [SMD: 0.04, CI (−0.54, 0.62), P = 0.10] between the two groups. Conclusion: The HRV of patients with PD is significantly lower than that of normal healthy individuals, indicating a connection between PD and cardiac autonomic nerve damage.
文章引用:刘致春, 吴佳和, 姜雨希, 程为平. 帕金森病与心率变异性关系的Meta分析[J]. 临床医学进展, 2025, 15(4): 2639-2649. https://doi.org/10.12677/acm.2025.1541223

1. 引言

帕金森病(Parkinson’s Disease, PD)在神经退行性疾病中位居第二,仅次于阿尔茨海默病,其主要临床特征包括运动迟缓、静止性震颤、肌强直以及姿势障碍等[1]。在PD的临床表现中,除了较为典型的运动症状外,非运动症状里的自主神经功能障碍亦较为常见。其中心脏自主神经功能症状在发病初期便可出现,或与路易体在心脏交感神经及迷走神经背核的早期沉积存在一定关联[2]。鉴于PD的运动症状往往在神经病理学进展至退行性病变的晚期阶段才会表现出来[3],因此,在疾病早期阶段对自主神经损害症状进行精准识别,对于PD的预防以及诊断具有重要的临床意义和价值。

心率变异性(heart rate variability, HRV)作为心脏自主活动的重要指标,其计算基于心电图中相邻两次心脏搏动间期时间与频率的差异,反映交感神经和副交感神经系统之间的平衡[4]。HRV的降低表明自主神经功能失衡,预示着不良的心血管健康结果[5]。作为一种简单且无创的方法,目前已被广泛用于监测心脏自主神经异常[6]。测量HRV常用的方法为时域法和频域法,其中,高频功率(HF)和相邻RR间期差值的均方根(RMSSD)被认为是最具特异性的副交感神经指标,另外,RR间期的标准差(SDNN),频域指标总功率(TP)和相邻正常心跳间隔相差超过50 ms的百分比(PNN50)也能反映副交感神经活性,而低频功率(LF)和低频与高频功率的比值(LF/HF)则反映交感神经和迷走神经之间的平衡。

本研究的目的是利用Meta分析方法,运用HRV检测评价早期帕金森病与心脏自主神经功能之间的关系,系统总结多项研究结果,期望评估心脏自主神经功能障碍可以为PD患者的早期诊断和治疗提供客观依据。

2. 资料与方法

2.1. 资料来源

计算机检索Pubmed、Embase、Cochrane Library、Web of Science、中国知网(CNKI)、万方(Wanfang)、维普(VIP)数据库。检索时间从建库至2023年11月25日。采用主题词结合自由词的检索方式,并根据不同数据库进行相应调整。英文检索词包括Parkinson Disease、Idiopathic Parkinson’s Disease、Lewy Body Parkinson’s Disease、Primary Parkinsonism、HRV、heart rate variability等。中文检索词包括帕金森病、帕金森症、震颤麻痹、帕金森、心率变异性、心率等。

2.2. 纳入与排除标准

2.2.1. 纳入标准

(1) 研究类型:病例对照研究。(2) 研究对象:实验组为明确诊断为PD的患者,其平均Hoehn-Yahr (H&Y)分期<2或平均病程 < 2年,对照组为健康人群。(3) 结局指标:① 频域指标(包括绝对值、归一化值和对数值):HF、LF、LF/HF和TP;② 时域指标:RMSSD、SDNN和PNN50。

2.2.2. 排除标准

(1) 研究对象合并有其他自主神经功能疾病或可能服用影响HRV的药物。(2) 研究未设置健康对照组。(3) 重复发表。(4) 动物实验、综述、学位论文、会议论文等。(5) 数据不全或无法提取所需数据的研究。

2.3. 文献筛选与资料提取

运用Endnote X9软件对纳入的文献进行去重、筛选。2名研究者独立进行文献阅读、筛选,意见不统一者交由第三方协商处理。剔除重复文献后,首先阅读标题,排除明显不符合文献,再阅读摘要和全文进行复筛,最终确定纳入文献。资料提取内容包括第一作者、发表年份、年龄、性别、结局指标、病程长短,疾病分期等。对于计量资料,以均值±标准差的形式提取,若研究仅报告均值和标准误,采用SD = s × SQRT (N组)计算标准差。若研究仅报告中位数和四分位间距,采用Luo等[7]和Wan等[8]报告的方法算出均值和标准差。

2.4. 质量评价

根据纽卡斯尔–渥太华量表(Newcastle-Ottawa scale, NOS),对纳入的研究进行质量评价。NOS总共3个维度8个条目,总分为9分,4~6分为中等质量研究,≥7分为高质量研究。本研究质量评价由两名研究人员独立完成,如出现分歧,则经讨论或交由第三方处理。

2.5. 统计分析

应用Revman 5.4和Stata 15.0软件进行Meta分析,本研究结局指标为计量资料,合并效应量以标准化均数差(SMD)表示,区间估计以95%置信区间(95%CI)表示,效应量的检验水准为α = 0.05。采用Q检验和I2检验判断各研究间的异质性,当P ≥ 0.01和I2 ≤ 50%,无异质性,采用固定效应模型进行合并效应分析;当P < 0.01和I2 > 50%,存在异质性,采用随机效应模型进行合并效应分析。当研究间存在异质性时,进一步分析异质性来源。用漏斗图和Egger检验评估所纳入文献的潜在发表偏倚,以P > 0.05为不存在发表偏倚。采用逐一剔除法进行敏感性分析,以检查剔除单个试验是否会降低异质性,同时借此评估meta分析结果的稳健性。

3. 结果

3.1. 文献筛选流程及结果

初检共获得相关文献1307篇,包括PubMed (n = 178)、Embase (n = 387)、Web of Science (n = 415)、Cochrane Library (n = 89)、CNKI (n = 49)、WanFang Data (n = 66)、VIP (n = 122)。经逐层筛选后,最终纳入17篇文献[9]-[25],包括404例患者和430例健康对照。具体流程见图1

Figure 1. The process of literature screening

1. 文献筛选流程图

3.2. 文献质量特征及评价

本研究最终纳入17项研究,质量评分均为中等及以上。纳入文献基本特征见表1

Table 1. General data table outcome indicators: ① HF; ② LF; ③ LF/HF; ④ TP; ⑤ RMSSD; ⑥ SDNN; ⑦ PNN50; Data are presented as mean ± standard deviation unless otherwise noted. #: expressed as the median; na: Not reported

1. 一般资料表结局指标:① HF;② LF;③ LF/HF;④ TP;⑤ RMSSD;⑥ SDNN;⑦ PNN50;数据均以均值 ± 标准差形式展示除非另有标注;#:以中位数表示;na:未报道

纳入研究

例数

年龄(岁)

性别比 [男(%)]

病程(年)

H&Y分期(期)

结局指标

测量时间

NOS评分

实验组

对照组

实验组

对照组

实验组

对照组

Kallio, 2000 [9]

50/20

55/24

60 ± 9

56 ± 12

56%

49%

2.1 ± 1.8

1.7 ± 0.7

①②③⑤⑥⑦

短时

7

Haapaniemi, 2001 [10]

54

47

61.4 ± 10.9

59.6 ± 9.4

59%

68%

1.7 ± 1.6

1.5#

①②⑥

长时

7

Pursiainen, 2002 [11]

44

43

62.6 ± 10.2

60.4 ± 9.2

59%

67%

1.7 ± 1.7

1.8 ± 0.6

①②⑥

长时

8

Devos, 2003 [12]

10

10

59.5 ± 5.1

61.2 ± 6.1

60%

60%

1.5 ± 1.1

na

①②③

长时

8

Bouhaddi, 2004 [13]

9

9

61 ± 10

63 ± 7

67%

78%

1.2 ± 0.4

1 ± 0.4

①②③④

短时

7

Kallio, 2004 [14]

19

20

58.2

55.6

67%

45%

1.8 ± 2.0

1.5

①②③④⑥

长时

8

续表

Buob, 2010 [15]

7

7

50 ± 5

50 ± 5

57%

43%

4 ± 2

1~1.5

⑤⑥

长时

7

Oka, 2011 [16]

20

20

68.7 ± 8.2

67.7 ± 8.5

35%

30%

1.4

1.95

①②③

短时

7

Liou, 2013 [17]

26

23

66.85 ± 1.66

64.83 ± 1.76

62%

43%

2.6

1.31

①②

短时

8

王海峰,2013 [18]

12

50

na

61.9 ± 8.8

na

60%

na

1~1.5

①②③⑤⑥

长时

6

Asahina, 2014 [19]

50

20

64.2 ± 8.9

63.6 ± 7.9

56%

50%

1.8 ± 1.4

1.62 ± 0.69

①②③

短时

6

Strano, 2016 [20]

18

18

59.3 ± 10.5

na

na

na

1.3 ± 0.7

Na

①②③④

短时

5

Yoon ,2016 [21]

27

23

64.1 ± 5.1

63.2 ± 7.1

55%

52%

1.59 ± 0.48

Na

①②③④⑤⑥

短时

7

Rocchi, 2018 [22]

17

12

68.3 ± 7.9

69.4 ± 7.33

65%

67%

2.3 ± 1.8

1~2

①②③

短时

7

Matei, 2019 [23]

30

20

63.2 ± 3.47

61.84 ± 3.54

60%

50%

na

1~2

①②③⑤⑥⑦

短时

7

Arnao, 2020 [24]

18

18

55.6 ± 8.8

55.6 ± 8.8

50%

50%

5.0 ± 4.7

1~2

⑤⑥⑦

长时

8

何倩倩,2023 [25]

23

66

67.61 ± 7.18

66.67 ± 9.83

na

50%

1.80 ± 0.86

1.01 ± 0.00

①②⑤⑥⑦

长时

7

3.3. Meta分析结果

3.3.1. HF

纳入15篇文献[9]-[14] [16]-[23] [25]报告了HF,共纳入379例患者和405例对照,各研究间存在异质性(I2 = 81%, P < 0.001),采用随机效应模型进行分析。结果显示,PD患者的HF低于对照组[SMD: −0.44, CI (−0.80, −0.09), P = 0.01],差异具有统计学意义。Egger检验(P = 0.273)显示各研究之间不存在明显的发表偏倚。采用逐一剔除法去除一项研究[9]后,纳入各项研究之间的异质性明显降低(I2 = 59%, P = 0.003),但结果显示PD患者的HF仍低于对照组,[SMD: −0.28, CI (−0.53, −0.03), P = 0.03],敏感性分析表明研究结果具有稳健性,见图2

Figure 2. Forest plot for HF

2. HF的森林图

3.3.2. LF

纳入15篇文献[9]-[14] [16]-[23] [25]报告了LF,共纳入379例患者和405例对照,各研究间存在异质性(I2 = 84%, P < 0.001),采用随机效应模型进行分析。结果显示,PD患者的LF与对照组相比,差异无统计学意义[SMD: −0.17, CI (−0.55, 0.22), P = 0.40],见图3

Figure 3. Forest plot for LF

3. LF的森林图

3.3.3. LF/HF

纳入11篇文献[9] [12]-[14] [16] [18]-[23]报告了LF/HF,共纳入232例患者和226例对照,各研究间存在异质性(I2 = 88%, P < 0.001),采用随机效应模型进行分析。结果显示,PD患者的LF/HF与对照组相比,差异无统计学意义[SMD: 0.04, CI (−0.54, 0.62), P = 0.10],见图4

Figure 4. Forest plot for LF/HF

4. LF/HF的森林图

3.3.4. TP

纳入4篇文献[13] [14] [20] [21]报告了TP,共纳入73例患者和70例对照,各研究间存在异质性(I2 = 86%, P < 0.001),采用随机效应模型进行分析。结果显示,PD患者的TP与对照组相比,差异无统计学意义[SMD: −0.82, CI (−1.78, 0.15), P = 0.89],见图5。敏感性分析显示异质性来源,去除一项研究[14]后,纳入各项研究之间的异质性明显降低(I2 = 0%, P = 0.48),合并后结果显示PD患者的TP低于对照组[SMD: −1.31, CI (−1.74, −0.88), P < 0.001],差异有统计学意义。这可能是由于Kailo等人的研究[14]采用长时测量,余三项研究[13] [20] [21]采用短时测量导致的差异。

3.3.5. RMMSD

纳入7篇文献[9] [15] [18] [21] [23]-[25]报告了RMSSD,共纳入167例患者和239例对照,各研究间异质性不显著(I2 = 39%, P = 0.13),采用固定效应模型进行分析。结果显示,PD患者的RMSSD低于对照组[SMD: −0.84, CI (−1.06, −0.62), P < 0.001],差异具有统计学意义,见图6

Figure 5. Forest plot for TP

5. TP的森林图

Figure 6. Forest plot for RMSSD

6. RMSSD的森林图

3.3.6. SDNN

纳入10篇文献[9]-[11] [14] [15] [18] [21] [23]-[25]报告了SDNN,共纳入284例患者和349例对照,各研究间异质性显著(I2 = 83%, P = 0.004),采用随机效应模型进行分析。结果显示,PD患者的SDNN低于对照组[SMD: −0.63, CI (−1.06, −0.21), P=0.004],差异具有统计学意义,见图7。敏感性分析显示异质性来源,去除一项研究[9]后,纳入各项研究之间的异质性明显降低(I2 = 41%, P = 0.09),合并后结果显示PD患者的SDNN仍显著低于对照组[SMD: −0.45, CI (−0.70, −0.21), P < 0.001],表明结果可靠。

Figure 7. Forest plot for SDNN

7. SDNN的森林图

3.3.7. pNN50

纳入4篇文献[9] [23]-[25]报告了pNN50,共纳入91例患者和128例对照,各研究间异质性显著(I2 = 91%, P < 0.001),采用随机效应模型进行分析。结果显示,PD患者的pNN50低于对照组[SMD: −1.21, CI (−2.29, −0.13), P = 0.03],差异具有统计学意义,见图8。敏感性分析显示异质性来源,去除一项研究[9]后,纳入各项研究之间的异质性明显降低(I2 = 0%, P = 0.37),合并后结果显示PD患者的pNN50仍显著低于对照组[SMD: −0.56, CI (−0.88, −0.23), P < 0.001],表明结果可信。

Figure 8. Forest plot for pNN50

8. pNN50的森林图

3.4. 敏感性分析

将纳入的研究逐一剔除,并将每次剔除后获得的meta分析效应量与总效应量进行比较,并评估结果是否有显著变化。采用逐一剔除法后发现,除TP外,其余结局指标的研究结果均具有稳健性。

3.5. 偏倚分析

漏斗图和Egger检验显示,本研究使用的7个结局指标均不存在发表偏倚,表明meta分析结果基本可靠,不受发表偏倚因素的影响。

4. 讨论

根据全球疾病负担报告所示,神经系统疾病已成为人类主要致残因素,其中帕金森病(PD)的患病率呈快速上升态势,全球患病人数达600万之多,预计到2040年将突破1200万[26]。在PD患者的住院原因中,心血管症状位列第二,仅次于细菌与病毒感染[27]。相较于同龄健康人群,PD患者罹患心血管疾病的风险明显升高[28],引发复杂的心血管功能与结构障碍[29],进而致使临床情况与疾病进程恶化。已有研究表明[30],合并慢性心力衰竭的PD患者其不良预后风险高于单纯PD患者。鉴于此,建议对PD患者的自主神经功能开展持续监测,达到有效降低其心血管疾病风险的目的[31]。考虑到心率变异性(HRV)具有安全、非侵入性且操作简便的优点,可将其作为一种自主神经监测手段应用于PD患者的临床管理中。

本研究结果显示,与健康同龄人群相比,PD患者的副交感神经相关HRV参数(HF、SDNN、RMMSD、PNN50)均显著降低,提示PD患者副交感神经活动异常,这与PD病程中出现迷走神经萎缩的假设一致[32]。由于TP指标受多种因素的影响,其临床意义不如其他HRV指标明确,暂时将其排除。尚未发现LF、LF/HF在PD患者与健康人之间的差异,可能由于LF波动较为复杂,目前还未明确LF与心脏交感神经张力的关系[33]。一些研究认为,LF受多种因素调节,比如血管压力反射、突触后信号转导和电化学耦合等。同样,LF/HF比值的实用性和意义也存在一定争议[34]

本研究表明心率变异性(HRV)降低与帕金森病(PD)患病风险上升存在一定关联,此结果与Heimrich等人的系统评价结论基本一致[35]。但Heimrich的研究纳入人群多数为中晚期PD患者。由于中晚期PD病情复杂,影响HRV的因素增多,而且长期使用抗帕金森药物会显著干扰HRV水平[2],这可能会掩盖PD与HRV之间的真实内在联系,使研究结果存在偏差。本研究采用了更优化的设计,依据疾病分期精准筛选出早期PD患者,并纳入最新的研究成果,有效减少了疾病严重程度及药物因素对研究的不良影响,使结果的可信度得以提升,为揭示PD与HRV的关系提供了更具说服力的证据。

在PD的发病机制研究中,发现其与心脏自主神经功能存在诸多潜在关联[36]-[42]。多巴胺神经元受损在PD发病机制里占据关键地位,例如6-羟基多巴胺这种能够诱导多巴胺能神经元损失的神经毒素,已被证实可同时引发心脏交感神经损伤[36]α-突触核蛋白的错误折叠与异常聚集是致使多巴胺神经元变性的重要因素,近期研究表明[37],相较于对照组,高达82%的α-突触核蛋白病患者的心脏神经内发现α-突触核蛋白沉积物。维生素D水平降低不仅会引发多巴胺能神经元凋亡[38],还会提升心血管疾病的发病风险[39] [40]。此外,DJ-1蛋白作为PD患者的一项重要血清标志物,具有神经保护特性,其各类基因突变与PD发病风险升高相关[41]。与此同时,DJ-1蛋白能通过促抗氧化基因表达对心血管系统起到保护作用[42],这一系列研究结果均暗示PD与心脏自主神经损伤之间具有一定程度的关联性。

此次研究尚存在一些不足,首先,尽管我们努力搜寻相关文献,仍然可能会漏掉一些灰色文献,可能对研究结果产生一定影响。其次,由于患者群体的不同、测量方法和测量时间的差异等因素,纳入的各研究间存在较大的异质性。最后,本研究纳入文献大多基于临床病例对照数据,难以实施盲法和随机分组,未来有望更多与PD患者心率变异性相关的高质量文章发表。

综上所述,当前证据表明,PD与心脏自主神经功能损伤存在联系,可将HRV作为监测PD自主神经功能的工具。受纳入研究数量和质量限制,上述结论尚需开展更多高质量研究予以验证。

NOTES

*通讯作者。

参考文献

[1] 中华医学会神经病学分会帕金森病及运动障碍学组. 中国帕金森病治疗指南(第三版) [J]. 中华神经科杂志, 2014, 47(6): 428-433.
[2] Ziemssen, T. and Reichmann, H. (2010) Cardiovascular Autonomic Dysfunction in Parkinson’s Disease. Journal of the Neurological Sciences, 289, 74-80.
https://doi.org/10.1016/j.jns.2009.08.031
[3] Braak, H., Tredici, K.D., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H. and Braak, E. (2003) Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging, 24, 197-211.
https://doi.org/10.1016/s0197-4580(02)00065-9
[4] Pham, T., Lau, Z.J., Chen, S.H.A. and Makowski, D. (2021) Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors, 21, Article No. 3998.
https://doi.org/10.3390/s21123998
[5] Mejía-Mejía, E., Budidha, K., Abay, T.Y., May, J.M. and Kyriacou, P.A. (2020) Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses. Frontiers in Physiology, 11, Article No. 779.
https://doi.org/10.3389/fphys.2020.00779
[6] Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C. and Bugiardini, R. (2012) Heart Rate Variability Today. Progress in Cardiovascular Diseases, 55, 321-331.
https://doi.org/10.1016/j.pcad.2012.09.001
[7] Luo, D., Wan, X., Liu, J. and Tong, T. (2016) Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-Quartile Range. Statistical Methods in Medical Research, 27, 1785-1805.
https://doi.org/10.1177/0962280216669183
[8] Wan, X., Wang, W., Liu, J. and Tong, T. (2014) Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Medical Research Methodology, 14, Article No. 135.
https://doi.org/10.1186/1471-2288-14-135
[9] Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., et al. (2000) Heart Rate Variability in Patients with Untreated Parkinson’s Disease. European Journal of Neurology, 7, 667-672.
https://doi.org/10.1046/j.1468-1331.2000.00127.x
[10] Haapaniemi, T.H. (2001) Ambulatory ECG and Analysis of Heart Rate Variability in Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 70, 305-310.
https://doi.org/10.1136/jnnp.70.3.305
[11] Pursiainen, V., Haapaniemi, T.H., Korpelainen, J.T., Huikuri, H.V., Sotaniemi, K.A. and Myllylä, V.V. (2002) Circadian Heart Rate Variability in Parkinson’s Disease. Journal of Neurology, 249, 1535-1540.
https://doi.org/10.1007/s00415-002-0884-0
[12] Guieu, J.D., Libersa, C., Destee, A., Devos, D., Kroumova, M., Bordet, R., et al. (2003) Heart Rate Variability and Parkinson’s Disease Severity. Journal of Neural Transmission, 110, 997-1011.
https://doi.org/10.1007/s00702-003-0016-8
[13] Bouhaddi, M., Vuillier, F., Fortrat, J.O., Cappelle, S., Henriet, M.T., Rumbach, L., et al. (2004) Impaired Cardiovascular Autonomic Control in Newly and Long-Term-Treated Patients with Parkinson’s Disease: Involvement of L-Dopa Therapy. Autonomic Neuroscience, 116, 30-38.
https://doi.org/10.1016/j.autneu.2004.06.009
[14] Suominen, K., Haapaniemi, T., Sotaniemi, K., Myllyl, V.V., Astafiev, S., Tolonen, U., et al. (2004) Nocturnal Cardiac Autonomic Regulation in Parkinson’s Disease. Clinical Autonomic Research, 14, 119-124.
https://doi.org/10.1007/s10286-004-0173-3
[15] Buob, A., Winter, H., Kindermann, M., Becker, G., Möller, J.C., Oertel, W.H., et al. (2010) Parasympathetic but Not Sympathetic Cardiac Dysfunction at Early Stages of Parkinson’s Disease. Clinical Research in Cardiology, 99, 701-706.
https://doi.org/10.1007/s00392-010-0170-6
[16] Oka, H., Toyoda, C., Yogo, M. and Mochio, S. (2011) Cardiovascular Dysautonomia in De Novo Parkinson’s Disease without Orthostatic Hypotension. European Journal of Neurology, 18, 286-292.
https://doi.org/10.1111/j.1468-1331.2010.03135.x
[17] Liou, L., Ruge, D., Chang, Y., Wu, M., Hsu, C., Lin, C., et al. (2013) Functional Connectivity between Lateral Premotor-Parietal Circuits and the Cardiac Autonomic System in Parkinson’s Disease. Journal of the Neurological Sciences, 326, 48-52.
https://doi.org/10.1016/j.jns.2013.01.008
[18] 王海峰, 汪咏秋, 卢苗青, 等. 帕金森病患者心脏自主神经功能的临床研究[J]. 现代实用医学, 2013, 25(04): 396-398.
[19] Asahina, M., Mathias, C.J., Katagiri, A., Low, D.A., Vichayanrat, E., Fujinuma, Y., et al. (2014) Sudomotor and Cardiovascular Dysfunction in Patients with Early Untreated Parkinson’s Disease. Journal of Parkinsons Disease, 4, 385-393.
https://doi.org/10.3233/jpd-130326
[20] Strano, S., Fanciulli, A., Rizzo, M., Marinelli, P., Palange, P., Tiple, D., et al. (2016) Cardiovascular Dysfunction in Untreated Parkinson’s Disease: A Multi-Modality Assessment. Journal of the Neurological Sciences, 370, 251-255.
https://doi.org/10.1016/j.jns.2016.09.036
[21] Yoon, J.H., Kim, M.S., Lee, S.M., Kim, H.J. and Hong, J.M. (2016) Heart Rate Variability to Differentiate Essential Tremor from Early-Stage Tremor-Dominant Parkinson’s Disease. Journal of the Neurological Sciences, 368, 55-58.
https://doi.org/10.1016/j.jns.2016.06.059
[22] Rocchi, C., Placidi, F., Liguori, C., Del Bianco, C., Lauretti, B., Diomedi, M., et al. (2018) Daytime Autonomic Activity in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: A Preliminary Study. Sleep Medicine, 52, 163-167.
https://doi.org/10.1016/j.sleep.2018.08.023
[23] Matei, D., Luca, C., Andritoi, D., Fuior, R., Zaharia, D., Onu, I., et al. (2019) Autonomic Dysfunction and Peripheral Nerve Involvement in Patients with Parkinson’s Disease. Balneo Research Journal, 10, 55-61.
https://doi.org/10.12680/balneo.2019.240
[24] Arnao, V., Cinturino, A., Mastrilli, S., Buttà, C., Maida, C., Tuttolomondo, A., et al. (2020) Impaired Circadian Heart Rate Variability in Parkinson’s Disease: A Time-Domain Analysis in Ambulatory Setting. BMC Neurology, 20, Article No. 152.
https://doi.org/10.1186/s12883-020-01722-3
[25] 何倩倩, 伏兵, 陈皆春, 等. 心率变异性与帕金森病病情进展的关系[J]. 中国基层医药, 2023, 30(10): 1451-1456.
[26] Dorsey, E.R., Sherer, T., Okun, M.S. and Bloem, B.R. (2018) The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinsons Disease, 8, S3-S8.
https://doi.org/10.3233/jpd-181474
[27] Schootman, M. (2012) Predictors of Survival in Patients with Parkinson Disease. Archives of Neurology, 69, 601-607.
https://doi.org/10.1001/archneurol.2011.2370
[28] Park, J., Kim, D., Park, Y., Kwon, D., Choi, M., Jung, J., et al. (2020) Association of Parkinson Disease with Risk of Cardiovascular Disease and All-Cause Mortality: A Nationwide, Population‑Based Cohort Study. Circulation, 141, 1205-1207.
https://doi.org/10.1161/circulationaha.119.044948
[29] Kincl, V., Panovský, R., Bočková, M., Rektor, I., Mojica‐Pisciotti, M.L. and Máchal, J. (2023) Parkinson’s Disease Cardiovascular Symptoms: A New Complex Functional and Structural Insight. European Journal of Neurology, 31, e16110.
https://doi.org/10.1111/ene.16110
[30] 温清艳, 区浩林, 孙巧松, 等. 帕金森伴慢性心力衰竭患者心率变异性的变化特点及其与心功能指标和预后的关系[J]. 广东医学, 2017, 38(22): 3485-3487+3490.
[31] Suri, J.S., Paul, S., Maindarkar, M.A., Puvvula, A., Saxena, S., Saba, L., et al. (2022) Cardiovascular/Stroke Risk Stratification in Parkinson’s Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites, 12, Article No. 312.
https://doi.org/10.3390/metabo12040312
[32] Huckemann, S., Mueller, K., Averdunk, P., Kühn, E., Hilker, L., Kools, S., et al. (2022) Vagal Cross-Sectional Area Correlates with Parasympathetic Dysfunction in Parkinson’s Disease. Brain Communications, 5, fcad006.
https://doi.org/10.1093/braincomms/fcad006
[33] Goldstein, D.S., Bentho, O., Park, M. and Sharabi, Y. (2011) Low-Frequency Power of Heart Rate Variability Is Not a Measure of Cardiac Sympathetic Tone but May Be a Measure of Modulation of Cardiac Autonomic Outflows by Baroreflexes. Experimental Physiology, 96, 1255-1261.
https://doi.org/10.1113/expphysiol.2010.056259
[34] Heathers, J.A.J. (2014) Everything Hertz: Methodological Issues in Short-Term Frequency-Domain HRV. Frontiers in Physiology, 5, Article No. 177.
https://doi.org/10.3389/fphys.2014.00177
[35] Heimrich, K.G., Lehmann, T., Schlattmann, P. and Prell, T. (2021) Heart Rate Variability Analyses in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Brain Sciences, 11, Article No. 959.
https://doi.org/10.3390/brainsci11080959
[36] Rodrigues, L.D., Oliveira, L.F., Shinoda, L., Scorza, C.A., Faber, J., Ferraz, H.B., et al. (2019) Cardiovascular Alterations in Rats with Parkinsonism Induced by 6-OHDA and Treated with Domperidone. Scientific Reports, 9, Article No. 8965.
https://doi.org/10.1038/s41598-019-45518-z
[37] Javanshiri, K., Drakenberg, T., Haglund, M. and Englund, E. (2022) Cardiac Alpha-Synuclein Is Present in Alpha-Synucleinopathies. Journal of Parkinsons Disease, 12, 1125-1131.
https://doi.org/10.3233/jpd-223161
[38] Pignolo, A., Mastrilli, S., Davì, C., Arnao, V., Aridon, P., dos Santos Mendes, F.A., et al. (2022) Vitamin D and Parkinson’s Disease. Nutrients, 14, Article No. 1220.
https://doi.org/10.3390/nu14061220
[39] Rizzoni, D., Rizzoni, M. and Nardin, M. (2019) Vitamin D and Ischaemic Heart Disease: A Casual or a Causal Association? Commentary on: “Raslan E et al. Association of Vitamin D Deficiency with Chronic Stable Angina: A Case‑Control Study”. High Blood Pressure & Cardiovascular Prevention, 26, 151-155.
https://doi.org/10.1007/s40292-019-00302-y
[40] Liu, X., Wang, W., Tan, Z., Zhu, X., Liu, M., Wan, R., et al. (2019) The Relationship between Vitamin D and Risk of Atrial Fibrillation: A Dose-Response Analysis of Observational Studies. Nutrition Journal, 18, Article No. 73.
https://doi.org/10.1186/s12937-019-0485-8
[41] Repici, M. and Giorgini, F. (2019) DJ-1 in Parkinson’s Disease: Clinical Insights and Therapeutic Perspectives. Journal of Clinical Medicine, 8, Article No. 1377.
https://doi.org/10.3390/jcm8091377
[42] Tsoporis, J.N., Drosatos, I., Gupta, S., Amatullah, H., Izhar, S., dos Santos, C.C., et al. (2021) Cytoprotective Mechanisms of DJ-1: Implications in Cardiac Pathophysiology. Molecules, 26, Article No. 3795.
https://doi.org/10.3390/molecules26133795