[1]
|
Li, J., Zou, B., Yeo, Y.H., Feng, Y., Xie, X., Lee, D.H., et al. (2019) Prevalence, Incidence, and Outcome of Non-Alcoholic Fatty Liver Disease in Asia, 1999-2019: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 4, 389-398. https://doi.org/10.1016/s2468-1253(19)30039-1
|
[2]
|
Zhang, D., Zhang, L., Chen, S., Chen, R., Zhang, X. and Bai, F. (2023) Prevalence and Risk Factors of Metabolic-Associated Fatty Liver Disease among Hospital Staff. Diabetes, Metabolic Syndrome and Obesity, 16, 1221-1234. https://doi.org/10.2147/dmso.s407657
|
[3]
|
Eslam, M., Sanyal, A.J., George, J., Sanyal, A., Neuschwander-Tetri, B., Tiribelli, C., et al. (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.E1. https://doi.org/10.1053/j.gastro.2019.11.312
|
[4]
|
Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039
|
[5]
|
Eslam, M., El-Serag, H.B., Francque, S., Sarin, S.K., Wei, L., Bugianesi, E., et al. (2022) Metabolic (Dysfunction)-Associated Fatty Liver Disease in Individuals of Normal Weight. Nature Reviews Gastroenterology & Hepatology, 19, 638-651. https://doi.org/10.1038/s41575-022-00635-5
|
[6]
|
Wen, W., Li, H., Wang, C., Chen, C., Tang, J., Zhou, M., et al. (2022) Metabolic Dysfunction-Associated Fatty Liver Disease and Cardiovascular Disease: A Meta-Analysis. Frontiers in Endocrinology, 13, Article 934225. https://doi.org/10.3389/fendo.2022.934225
|
[7]
|
Sun, D., Targher, G., Byrne, C.D., Wheeler, D.C., Wong, V.W., Fan, J., et al. (2023) An International Delphi Consensus Statement on Metabolic Dysfunction-Associated Fatty Liver Disease and Risk of Chronic Kidney Disease. Hepatobiliary Surgery and Nutrition, 12, 386-403. https://doi.org/10.21037/hbsn-22-421
|
[8]
|
Velarde-Ruiz Velasco, J.A., García-Jiménez, E.S., García-Zermeño, K.R., Morel-Cerda, E.C., Aldana-Ledesma, J.M., Castro-Narro, G.E., et al. (2019) Extrahepatic Complications of Non-Alcoholic Fatty Liver Disease. Revista de Gastroenterología de México (English Edition), 84, 472-481. https://doi.org/10.1016/j.rgmxen.2019.05.004
|
[9]
|
Badmus, O.O., Hillhouse, S.A., Anderson, C.D., Hinds, T.D. and Stec, D.E. (2022) Molecular Mechanisms of Metabolic Associated Fatty Liver Disease (MAFLD): Functional Analysis of Lipid Metabolism Pathways. Clinical Science, 136, 1347-1366. https://doi.org/10.1042/cs20220572
|
[10]
|
Nassir, F. (2022) NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules, 12, Article 824. https://doi.org/10.3390/biom12060824
|
[11]
|
Bechmann, L.P., Gieseler, R.K., Sowa, J., Kahraman, A., Erhard, J., Wedemeyer, I., et al. (2009) Apoptosis Is Associated with CD36/Fatty Acid Translocase Upregulation in Non-Alcoholic Steatohepatitis. Liver International, 30, 850-859. https://doi.org/10.1111/j.1478-3231.2010.02248.x
|
[12]
|
Krammer, J., Digel, M., Ehehalt, F., Stremmel, W., Füllekrug, J. and Ehehalt, R. (2011) Overexpression of CD36 and Acyl-CoA Synthetases FATP2, FATP4 and ACSL1 Increases Fatty Acid Uptake in Human Hepatoma Cells. International Journal of Medical Sciences, 8, 599-614. https://doi.org/10.7150/ijms.8.599
|
[13]
|
Koo, S. (2013) Nonalcoholic Fatty Liver Disease: Molecular Mechanisms for the Hepatic Steatosis. Clinical and Molecular Hepatology, 19, 210-215. https://doi.org/10.3350/cmh.2013.19.3.210
|
[14]
|
Auinger, A., Valenti, L., Pfeuffer, M., Helwig, U., Herrmann, J., Fracanzani, A.L., et al. (2010) A Promoter Polymorphism in the Liver-Specific Fatty Acid Transport Protein 5 Is Associated with Features of the Metabolic Syndrome and Steatosis. Hormone and Metabolic Research, 42, 854-859. https://doi.org/10.1055/s-0030-1267186
|
[15]
|
Wang, G., Bonkovsky, H.L., de Lemos, A. and Burczynski, F.J. (2015) Recent Insights into the Biological Functions of Liver Fatty Acid Binding Protein 1. Journal of Lipid Research, 56, 2238-2247. https://doi.org/10.1194/jlr.r056705
|
[16]
|
Charlton, M., Viker, K., Krishnan, A., Sanderson, S., Veldt, B., Kaalsbeek, A.J., et al. (2009) Differential Expression of Lumican and Fatty Acid Binding Protein-1: New Insights into the Histologic Spectrum of Nonalcoholic Fatty Liver Disease. Hepatology, 49, 1375-1384. https://doi.org/10.1002/hep.22927
|
[17]
|
Ipsen, D.H., Lykkesfeldt, J. and Tveden-Nyborg, P. (2018) Molecular Mechanisms of Hepatic Lipid Accumulation in Non-Alcoholic Fatty Liver Disease. Cellular and Molecular Life Sciences, 75, 3313-3327. https://doi.org/10.1007/s00018-018-2860-6
|
[18]
|
Smith, G.I., Shankaran, M., Yoshino, M., Schweitzer, G.G., Chondronikola, M., Beals, J.W., et al. (2020) Insulin Resistance Drives Hepatic De Novo Lipogenesis in Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 130, 1453-1460. https://doi.org/10.1172/jci134165
|
[19]
|
Lambert, J.E., Ramos-Roman, M.A., Browning, J.D. and Parks, E.J. (2014) Increased De Novo Lipogenesis Is a Distinct Characteristic of Individuals with Nonalcoholic Fatty Liver Disease. Gastroenterology, 146, 726-735. https://doi.org/10.1053/j.gastro.2013.11.049
|
[20]
|
Lu, Y. and George, J. (2024) Interaction between Fatty Acid Oxidation and Ethanol Metabolism in Liver. American Journal of Physiology-Gastrointestinal and Liver Physiology, 326, G483-G494. https://doi.org/10.1152/ajpgi.00281.2023
|
[21]
|
Zeng, S., Wu, F., Chen, M., Li, Y., You, M., Zhang, Y., et al. (2022) Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1. Antioxidants & Redox Signaling, 36, 1081-1100. https://doi.org/10.1089/ars.2021.0157
|
[22]
|
Farzanegi, P., Dana, A., Ebrahimpoor, Z., Asadi, M. and Azarbayjani, M.A. (2019) Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. European Journal of Sport Science, 19, 994-1003. https://doi.org/10.1080/17461391.2019.1571114
|
[23]
|
Selen, E.S., Choi, J. and Wolfgang, M.J. (2021) Discordant Hepatic Fatty Acid Oxidation and Triglyceride Hydrolysis Leads to Liver Disease. JCI Insight, 6, e135626. https://doi.org/10.1172/jci.insight.135626
|
[24]
|
Qu, X., Wen, Y., Jiao, J., Zhao, J., Sun, X., Wang, F., et al. (2022) PARK7 Deficiency Inhibits Fatty Acid β-Oxidation via PTEN to Delay Liver Regeneration after Hepatectomy. Clinical and Translational Medicine, 12, e1061. https://doi.org/10.1002/ctm2.1061
|
[25]
|
Schlaepfer, I.R. and Joshi, M. (2020) CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161, bqz046. https://doi.org/10.1210/endocr/bqz046
|
[26]
|
Tang, M., Dong, X., Xiao, L., Tan, Z., Luo, X., Yang, L., et al. (2022) CPT1A-Mediated Fatty Acid Oxidation Promotes Cell Proliferation via Nucleoside Metabolism in Nasopharyngeal Carcinoma. Cell Death & Disease, 13, Article No. 331. https://doi.org/10.1038/s41419-022-04730-y
|
[27]
|
Mørkholt, A.S., Oklinski, M.K., Larsen, A., Bockermann, R., Issazadeh-Navikas, S., Nieland, J.G.K., et al. (2020) Pharmacological Inhibition of Carnitine Palmitoyl Transferase 1 Inhibits and Reverses Experimental Autoimmune Encephalitis in Rodents. PLOS ONE, 15, e0234493. https://doi.org/10.1371/journal.pone.0234493
|
[28]
|
Dong, X.C. (2023) Sirtuin 6—A Key Regulator of Hepatic Lipid Metabolism and Liver Health. Cells, 12, Article 663. https://doi.org/10.3390/cells12040663
|
[29]
|
Zhong, J., He, X., Gao, X., Liu, Q., Zhao, Y., Hong, Y., et al. (2023) Hyodeoxycholic Acid Ameliorates Nonalcoholic Fatty Liver Disease by Inhibiting Ran-Mediated PPARα Nucleus-Cytoplasm Shuttling. Nature Communications, 14, Article No. 5451. https://doi.org/10.1038/s41467-023-41061-8
|
[30]
|
Stec, D.E., Gordon, D.M., Hipp, J.A., Hong, S., Mitchell, Z.L., Franco, N.R., et al. (2019) Loss of Hepatic PPARα Promotes Inflammation and Serum Hyperlipidemia in Diet-Induced Obesity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 317, R733-R745. https://doi.org/10.1152/ajpregu.00153.2019
|
[31]
|
Lin, Y., Wang, Y. and Li, P. (2022) PPARα: An Emerging Target of Metabolic Syndrome, Neurodegenerative and Cardiovascular Diseases. Frontiers in Endocrinology, 13, Article 1074911. https://doi.org/10.3389/fendo.2022.1074911
|
[32]
|
Hinds, T.D., Creeden, J.F., Gordon, D.M., Stec, D.F., Donald, M.C. and Stec, D.E. (2020) Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Frontiers in Pharmacology, 11, Article 594574. https://doi.org/10.3389/fphar.2020.594574
|
[33]
|
Kawano, Y. and Cohen, D.E. (2013) Mechanisms of Hepatic Triglyceride Accumulation in Non-Alcoholic Fatty Liver Disease. Journal of Gastroenterology, 48, 434-441. https://doi.org/10.1007/s00535-013-0758-5
|
[34]
|
Shindo, N., Fujisawa, T., Sugimoto, K., Nojima, K., Oze-Fukai, A., Yoshikawa, Y., et al. (2010) Involvement of Microsomal Triglyceride Transfer Protein in Nonalcoholic Steatohepatitis in Novel Spontaneous Mouse Model. Journal of Hepatology, 52, 903-912. https://doi.org/10.1016/j.jhep.2009.12.033
|
[35]
|
Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology and Hepatology, 2021, Article 6613827. https://doi.org/10.1155/2021/6613827
|
[36]
|
Gastaldelli, A. and Cusi, K. (2019) From NASH to Diabetes and from Diabetes to NASH: Mechanisms and Treatment Options. JHEP Reports, 1, 312-328. https://doi.org/10.1016/j.jhepr.2019.07.002
|
[37]
|
Tomah, S., Alkhouri, N. and Hamdy, O. (2020) Nonalcoholic Fatty Liver Disease and Type 2 Diabetes: Where Do Diabetologists Stand? Clinical Diabetes and Endocrinology, 6, Article No. 9. https://doi.org/10.1186/s40842-020-00097-1
|
[38]
|
Khan, R.S., Bril, F., Cusi, K. and Newsome, P.N. (2019) Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology, 70, 711-724. https://doi.org/10.1002/hep.30429
|
[39]
|
Shabalala, S.C., Dludla, P.V., Mabasa, L., Kappo, A.P., Basson, A.K., Pheiffer, C., et al. (2020) The Effect of Adiponectin in the Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Potential Role of Polyphenols in the Modulation of Adiponectin Signaling. Biomedicine & Pharmacotherapy, 131, Article 110785. https://doi.org/10.1016/j.biopha.2020.110785
|