[1]
|
Cai, H., Ao, Z., Tian, C., Wu, Z., Liu, H., Tchieu, J., et al. (2023) Brain Organoid Reservoir Computing for Artificial Intelligence. Nature Electronics, 6, 1032-1039. https://doi.org/10.1038/s41928-023-01069-w
|
[2]
|
Murphy, R.R. (2022) Would You Trust an Intelligent Robot? Science Robotics, 7, eade0862. https://doi.org/10.1126/scirobotics.ade0862
|
[3]
|
Wang, L., Zhang, X., Li, Q., Zhang, M., Su, H., Zhu, J., et al. (2023) Incorporating Neuro-Inspired Adaptability for Continual Learning in Artificial Intelligence. Nature Machine Intelligence, 5, 1356-1368. https://doi.org/10.1038/s42256-023-00747-w
|
[4]
|
Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., et al. (2017) Analogue Signal and Image Processing with Large Memristor Crossbars. Nature Electronics, 1, 52-59. https://doi.org/10.1038/s41928-017-0002-z
|
[5]
|
Liu, L., Xu, W., Ni, Y., Xu, Z., Cui, B., Liu, J., et al. (2022) Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition. ACS Nano, 16, 2282-2291. https://doi.org/10.1021/acsnano.1c08482
|
[6]
|
Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018) Efficient and Self-Adaptive In-Situ Learning in Multilayer Memristor Neural Networks. Nature Communications, 9, Article No. 2385. https://doi.org/10.1038/s41467-018-04484-2
|
[7]
|
Li, R., Dong, Y., Qian, F., Xie, Y., Chen, X., Zhang, Q., et al. (2023) CsPbBr3/Graphene Nanowall Artificial Optoelectronic Synapses for Controllable Perceptual Learning. PhotoniX, 4, Article No. 4. https://doi.org/10.1186/s43074-023-00082-8
|
[8]
|
Wang, R., Chen, P., Hao, D., Zhang, J., Shi, Q., Liu, D., et al. (2021) Artificial Synapses Based on Lead-Free Perovskite Floating-Gate Organic Field-Effect Transistors for Supervised and Unsupervised Learning. ACS Applied Materials & Interfaces, 13, 43144-43154. https://doi.org/10.1021/acsami.1c08424
|
[9]
|
Zhang, W., Yao, P., Gao, B., Liu, Q., Wu, D., Zhang, Q., et al. (2023) Edge Learning Using a Fully Integrated Neuro-Inspired Memristor Chip. Science, 381, 1205-1211. https://doi.org/10.1126/science.ade3483
|
[10]
|
Cui, B., Fan, Z., Li, W., Chen, Y., Dong, S., Tan, Z., et al. (2022) Ferroelectric Photosensor Network: An Advanced Hardware Solution to Real-Time Machine Vision. Nature Communications, 13, Article No. 1707. https://doi.org/10.1038/s41467-022-29364-8
|
[11]
|
Liang, J., Yu, X., Qiu, J., Wang, M., Cheng, C., Huang, B., et al. (2023) All-Optically Controlled Artificial Synapses Based on Light-Induced Adsorption and Desorption for Neuromorphic Vision. ACS Applied Materials & Interfaces, 15, 9584-9592. https://doi.org/10.1021/acsami.2c20166
|
[12]
|
Sabesan, R., Schmidt, B.P., Tuten, W.S. and Roorda, A. (2016) The Elementary Representation of Spatial and Color Vision in the Human Retina. Science Advances, 2, e1600797. https://doi.org/10.1126/sciadv.1600797
|
[13]
|
Shan, X., Zhao, C., Wang, X., Wang, Z., Fu, S., Lin, Y., et al. (2021) Plasmonic Optoelectronic Memristor Enabling Fully Light‐Modulated Synaptic Plasticity for Neuromorphic Vision. Advanced Science, 9, Article ID: 2104632. https://doi.org/10.1002/advs.202104632
|
[14]
|
Zhu, Q., Li, B., Yang, D., Liu, C., Feng, S., Chen, M., et al. (2021) A Flexible Ultrasensitive Optoelectronic Sensor Array for Neuromorphic Vision Systems. Nature Communications, 12, Article No. 1798. https://doi.org/10.1038/s41467-021-22047-w
|
[15]
|
Han, J., Yun, S., Yu, J., Jeon, S. and Choi, Y. (2023) Artificial Multisensory Neuron with a Single Transistor for Multimodal Perception through Hybrid Visual and Thermal Sensing. ACS Applied Materials & Interfaces, 15, 5449-5455. https://doi.org/10.1021/acsami.2c19208
|
[16]
|
Kwon, S.M., Cho, S.W., Kim, M., Heo, J.S., Kim, Y. and Park, S.K. (2019) Environment‐Adaptable Artificial Visual Perception Behaviors Using a Light‐adjustable Optoelectronic Neuromorphic Device Array. Advanced Materials, 31, Article ID: 1906433. https://doi.org/10.1002/adma.201906433
|
[17]
|
Wang, H., Zhao, Q., Ni, Z., Li, Q., Liu, H., Yang, Y., et al. (2018) A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual‐perception System. Advanced Materials, 30, Article ID: 1803961. https://doi.org/10.1002/adma.201803961
|
[18]
|
Yoo, H., Kim, E., Chung, J.W., Cho, H., Jeong, S., Kim, H., et al. (2022) Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS Applied Materials & Interfaces, 14, 54157-54169. https://doi.org/10.1021/acsami.2c14918
|
[19]
|
Cortacero, K., McKenzie, B., Müller, S., Khazen, R., Lafouresse, F., Corsaut, G., et al. (2023) Evolutionary Design of Explainable Algorithms for Biomedical Image Segmentation. Nature Communications, 14, Article No. 7112. https://doi.org/10.1038/s41467-023-42664-x
|
[20]
|
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J. and Maier-Hein, K.H. (2020) NNU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nature Methods, 18, 203-211. https://doi.org/10.1038/s41592-020-01008-z
|
[21]
|
Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., et al. (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163, 456-492. https://doi.org/10.1016/j.cell.2015.09.029
|
[22]
|
Zhou, M., Zhao, Y., Gu, X., Zhang, Q., Zhang, J., Jiang, M., et al. (2023) Realize Low-Power Artificial Photonic Synapse Based on (Al, Ga)n Nanowire/Graphene Heterojunction for Neuromorphic Computing. APL Photonics, 8, Article ID: 076107. https://doi.org/10.1063/5.0152156
|
[23]
|
Liu, J., Wu, Q., Sui, X., Chen, Q., Gu, G., Wang, L., et al. (2021) Research Progress in Optical Neural Networks: Theory, Applications and Developments. PhotoniX, 2, Article No. 5. https://doi.org/10.1186/s43074-021-00026-0
|
[24]
|
Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., Jarrahi, M., et al. (2018) All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science, 361, 1004-1008. https://doi.org/10.1126/science.aat8084
|
[25]
|
Goi, E., Chen, X., Zhang, Q., Cumming, B.P., Schoenhardt, S., Luan, H., et al. (2021) Nanoprinted High-Neuron-Density Optical Linear Perceptrons Performing Near-Infrared Inference on a CMOS Chip. Light: Science & Applications, 10, Article No. 40. https://doi.org/10.1038/s41377-021-00483-z
|
[26]
|
Cheng, J., Huang, C., Zhang, J., Wu, B., Zhang, W., Liu, X., et al. (2024) Multimodal Deep Learning Using On-Chip Diffractive Optics with in Situ Training Capability. Nature Communications, 15, Article No. 6189. https://doi.org/10.1038/s41467-024-50677-3
|
[27]
|
Lee, Y. and Ahn, J. (2020) Biomimetic Tactile Sensors Based on Nanomaterials. ACS Nano, 14, 1220-1226. https://doi.org/10.1021/acsnano.0c00363
|
[28]
|
Yang, J., Ge, C., Du, J., Huang, H., He, M., Wang, C., et al. (2018) Artificial Synapses Emulated by an Electrolyte‐Gated Tungsten‐Oxide Transistor. Advanced Materials, 30, Article ID: 1801548. https://doi.org/10.1002/adma.201801548
|
[29]
|
Wang, Y., Zheng, Y., Gao, J., Jin, T., Li, E., Lian, X., et al. (2021) Band‐tailored Van Der Waals Heterostructure for Multilevel Memory and Artificial Synapse. InfoMat, 3, 917-928. https://doi.org/10.1002/inf2.12230
|
[30]
|
Du, J., Ge, C., Riahi, H., Guo, E., He, M., Wang, C., et al. (2020) Dual‐Gated MoS2 Transistors for Synaptic and Programmable Logic Functions. Advanced Electronic Materials, 6, Article ID: 1901408. https://doi.org/10.1002/aelm.201901408
|
[31]
|
Yang, Q., Yang, H., Lv, D., Yu, R., Li, E., He, L., et al. (2021) High-Performance Organic Synaptic Transistors with an Ultrathin Active Layer for Neuromorphic Computing. ACS Applied Materials & Interfaces, 13, 8672-8681. https://doi.org/10.1021/acsami.0c22271
|
[32]
|
Isfahani, V.B., Memarian, N., Dizaji, H.R., Arab, A. and Silva, M.M. (2019) The Physical and Electrochromic Properties of Prussian Blue Thin Films Electrodeposited on ITO Electrodes. Electrochimica Acta, 304, 282-291. https://doi.org/10.1016/j.electacta.2019.02.120
|
[33]
|
Qian, J., Ma, D., Xu, Z., Li, D. and Wang, J. (2018) Electrochromic Properties of Hydrothermally Grown Prussian Blue Film and Device. Solar Energy Materials and Solar Cells, 177, 9-14. https://doi.org/10.1016/j.solmat.2017.08.016
|
[34]
|
Wen, R., Granqvist, C.G. and Niklasson, G.A. (2015) Eliminating Degradation and Uncovering Ion-Trapping Dynamics in Electrochromic WO3 Thin Films. Nature Materials, 14, 996-1001. https://doi.org/10.1038/nmat4368
|
[35]
|
Li, H., Jiang, X., Ye, W., Zhang, H., Zhou, L., Zhang, F., et al. (2019) Fully Photon Modulated Heterostructure for Neuromorphic Computing. Nano Energy, 65, Article ID: 104000. https://doi.org/10.1016/j.nanoen.2019.104000
|
[36]
|
Yang, B., Dong, Y. and Chen, X. (2024) Feature-Enhanced Artificial Visual Perception Based on Superlinear Voltage-Reflectance Responses of Electrochromic Arrays. ACS Photonics, 11, 1909-1919. https://doi.org/10.1021/acsphotonics.3c01862
|