[1]
|
Tang, X. and Kou, L. (2022) 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Physica Status Solidi (b), 259, Article 2100562. https://doi.org/10.1002/pssb.202100562
|
[2]
|
Zhao, B., Shen, D., Zhang, Z., Lu, P., Hossain, M., Li, J., et al. (2021) 2D Metallic Transition‐Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Advanced Functional Materials, 31, Article 2105132. https://doi.org/10.1002/adfm.202105132
|
[3]
|
Schmidt, H., Giustiniano, F. and Eda, G. (2015) Electronic Transport Properties of Transition Metal Dichalcogenide Field-Effect Devices: Surface and Interface Effects. Chemical Society Reviews, 44, 7715-7736. https://doi.org/10.1039/c5cs00275c
|
[4]
|
Gaonkar, N. and Vaidya, R.G. (2021) Lattice Thermal Conductivity of Zigzag and Armchair Black Phosphorus: Role of Normal Phonons. Solid State Communications, 328, Article 114236. https://doi.org/10.1016/j.ssc.2021.114236
|
[5]
|
Gong, F., Wu, F., Long, M., Chen, F., Su, M., Yang, Z., et al. (2018) Black Phosphorus Infrared Photodetectors with Fast Response and High Photoresponsivity. Physica Status Solidi—Rapid Research Letters, 12, Article 1800310. https://doi.org/10.1002/pssr.201800310
|
[6]
|
Liang, J., Hu, Y., Zhang, K., Wang, Y., Song, X., Tao, A., et al. (2021) 2D Layered Black Arsenic-Phosphorus Materials: Synthesis, Properties, and Device Applications. Nano Research, 15, 3737-3752. https://doi.org/10.1007/s12274-021-3974-y
|
[7]
|
Chia, X. and Pumera, M. (2018) Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis. Nature Catalysis, 1, 909-921. https://doi.org/10.1038/s41929-018-0181-7
|
[8]
|
Yang, Y., Hou, H., Zou, G., Shi, W., Shuai, H., Li, J., et al. (2019) Electrochemical Exfoliation of Graphene-Like Two-Dimensional Nanomaterials. Nanoscale, 11, 16-33. https://doi.org/10.1039/c8nr08227h
|
[9]
|
Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., et al. (2017) Graphene and Related Two-Dimensional Materials: Structure-Property Relationships for Electronics and Optoelectronics. Applied Physics Reviews, 4, Article 021306. https://doi.org/10.1063/1.4983646
|
[10]
|
Ricciardulli, A.G., Wang, Y., Yang, S. and Samorì, P. (2022) Two-Dimensional Violet Phosphorus: A p-Type Semiconductor for (Opto)electronics. Journal of the American Chemical Society, 144, 3660-3666. https://doi.org/10.1021/jacs.1c12931
|
[11]
|
Shi, X., Tao, X., Zou, J. and Chen, Z. (2020) High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Advanced Science, 7, Article 1902923. https://doi.org/10.1002/advs.201902923
|
[12]
|
Wei, J., Yang, L., Ma, Z., Song, P., Zhang, M., Ma, J., et al. (2020) Review of Current High-ZT Thermoelectric Materials. Journal of Materials Science, 55, 12642-12704. https://doi.org/10.1007/s10853-020-04949-0
|
[13]
|
Ren, X., Qi, X., Shen, Y., Xu, G., Li, J., Li, Z., et al. (2016) Synthesis of SnSe Nanosheets by Hydrothermal Intercalation and Exfoliation Route and Their Photoresponse Properties. Materials Science and Engineering: B, 214, 46-50. https://doi.org/10.1016/j.mseb.2016.09.001
|
[14]
|
Liu, Y., Calcabrini, M., Yu, Y., Lee, S., Chang, C., David, J., et al. (2021) Defect Engineering in Solution-Processed Polycrystalline SnSe Leads to High Thermoelectric Performance. ACS Nano, 16, 78-88. https://doi.org/10.1021/acsnano.1c06720
|
[15]
|
Chen, Z., Shi, X., Zhao, L. and Zou, J. (2018) High-Performance SnSe Thermoelectric Materials: Progress and Future Challenge. Progress in Materials Science, 97, 283-346. https://doi.org/10.1016/j.pmatsci.2018.04.005
|
[16]
|
Wang, H., Zhang, S., Zhang, T., Liu, J., Zhang, Z., Yuan, G., et al. (2021) SnSe Nanoplates for Photodetectors with a High Signal/Noise Ratio. ACS Applied Nano Materials, 4, 13071-13078. https://doi.org/10.1021/acsanm.1c02595
|
[17]
|
Li, X., Song, Z., Zhao, H., Zhang, W., Sun, Z., Liang, H., et al. (2020) SnSe Nanosheets: From Facile Synthesis to Applications in Broadband Photodetections. Nanomaterials, 11, Article 49. https://doi.org/10.3390/nano11010049
|
[18]
|
Wang, H., Sun, Y., Chen, J., Wang, F., Han, R., Zhang, C., et al. (2022) A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials, 12, Article 4390. https://doi.org/10.3390/nano12244390
|
[19]
|
Suchikova, Y., Nazarovets, S. and Popov, A.I. (2024) Ga2O3 Solar-Blind Photodetectors: From Civilian Applications to Missile Detection and Research Agenda. Optical Materials, 157, Article 116397. https://doi.org/10.1016/j.optmat.2024.116397
|
[20]
|
Manna, E., Xiao, T., Shinar, J. and Shinar, R. (2015) Organic Photodetectors in Analytical Applications. Electronics, 4, 688-722. https://doi.org/10.3390/electronics4030688
|
[21]
|
Nguyen, T.T., Patel, M. and Kim, J. (2021) Self-Powered Transparent Photodetectors for Broadband Applications. Surfaces and Interfaces, 23, Article 100934. https://doi.org/10.1016/j.surfin.2021.100934
|
[22]
|
Das, A., Chauhan, A., Trivedi, V., Tiadi, M., Kumar, R., Battabyal, M., et al. (2021) Effect of Iodine Doping on the Electrical, Thermal and Mechanical Properties of SnSe for Thermoelectric Applications. Physical Chemistry Chemical Physics, 23, 4230-4239. https://doi.org/10.1039/d0cp06130a
|
[23]
|
Jamali-Sheini, F., Cheraghizade, M. and Yousefi, R. (2018) Electrochemically Synthesis and Optoelectronic Properties of Pb-and Zn-Doped Nanostructured SnSe Films. Applied Surface Science, 443, 345-353. https://doi.org/10.1016/j.apsusc.2018.03.011
|
[24]
|
Patel, S., Chaki, S.H. and Vinodkumar, P.C. (2019) Pure SnSe, in and Sb Doped SnSe Single Crystals—Growth, Structural, Surface Morphology and Optical Bandgap Study. Journal of Crystal Growth, 522, 16-24. https://doi.org/10.1016/j.jcrysgro.2019.06.006
|
[25]
|
Singh, K., Dubey, P., Joshi, P.K., et al. (2023) Experimental and Theoretical Divulging of Electronic Structure and Optical Properties of Zn-Doped SnSe Thermoelectric Materials. Materials Science in Semiconductor Processing, 156, Article 107301.
|
[26]
|
Ikhioya, I.L., Uyoyou, O.B. and Oghenerivwe, A.L. (2022) The Effect of Molybdenum-Doped Tin Selenide Semiconductor Material (SnSe) Synthesized via Electrochemical Deposition Technique for Photovoltaic Application. Journal of Materials Science: Materials in Electronics, 33, 10379-10387. https://doi.org/10.1007/s10854-022-08025-y
|
[27]
|
Li, F., Chen, H., Xu, L., Zhang, F., Yin, P., Yang, T., et al. (2021) Defect Engineering in Ultrathin SnSe Nanosheets for High-Performance Optoelectronic Applications. ACS Applied Materials & Interfaces, 13, 33226-33236. https://doi.org/10.1021/acsami.1c05254
|
[28]
|
Kumar, M., Rani, S., Yadav, R., Singh, Y., Singh, M., Husale, S., et al. (2022) Large Area, Self-Powered, Flexible, Fast, and Broadband Photodetector Enabled by the SnSe-Sb2Se3 Heterostructure. Surfaces and Interfaces, 30, Article 101964. https://doi.org/10.1016/j.surfin.2022.101964
|
[29]
|
Liang, Z., Hao, R., Luo, H., He, Z., Su, L. and Fan, X. (2024) Enhancing the Photo-Response Performance of a SnSe-Based Photoelectrochemical Photodetector via Ga Doping. Journal of Materials Chemistry C, 12, 2981-2992. https://doi.org/10.1039/d3tc03937d
|