[1]
|
M. Grätzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153.
|
[2]
|
R. D. McConnell. Assessment of the dye-sensitized solar cell. Renewable & Sustainable Energy Reviews, 2002, 6(3): 273-295.
|
[3]
|
Q. Hou, Y. Zheng, J. Chen, W. Zhou, J. Deng and X. Tao. Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21: 3877-3883.
|
[4]
|
C. A. N. Fernando, I. Kumarawadu, K. Takahashi, A. Kitagawa and M. Suzuki. Crystal violet dye-sensitized photocurrent by participation of surface states on p-CuSCN photocathode. Solar Energy Materials and Solar Cells, 1999, 58(4): 337-347.
|
[5]
|
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. Visible-light photocataly-sis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
|
[6]
|
H. Irie, Y. Watanabe and K. Hashimoto. Nitro-gen-concentration dependence on photocatalytic activity of TiO2−xNx powders. Journal of Physical Chemistry B, 2003, 107(23): 5483-5846.
|
[7]
|
T. Umebayashi, T. Yamaki, H. Itoh and K. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002, 81(3): 454-456.
|
[8]
|
S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243-2245.
|
[9]
|
H. Irie, Y. Watanabe and K. Hashimoto. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemis- try Letters, 2003, 32: 772-773.
|
[10]
|
S. H. Kang, S. H. Kim, J. Y. Kim and Y. E. Sung. En-hanced photocurrent of nitrogen-doped TiO2 film for dye-sensitized solar cells. Materials and Chemistry Physics, 2010, 124: 422-426.
|
[11]
|
Q. Hou, Y. Zheng, J. Chen, W. Zhou, J. Deng and X. Tao. Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21: 3877-3883
|
[12]
|
H. Robert, G. Andrei, J. Salonen, et al. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology, 2007, 18(10): 1-4.
|
[13]
|
Y. L. Su, X. W. Zhang, S. Han, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochemistry Communications, 2007, 9(9): 2291-2298.
|
[14]
|
Y. Su, S. Chen, Q. Xie, et al. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Applied Surface Science, 2008, 255(5): 2167-2172.
|
[15]
|
T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A, 2004, 265: 115-121.
|
[16]
|
X. H. Wang, J.-G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki. Pyrogenic Iron(III)-doped TiO2 nano- powders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties. Journal of Ameri-can Chemical Society, 2005, 127(31): 10982-10990.
|
[17]
|
S. Liu, X. Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Haz-ardous Materials, 2008, 152(1): 48-55.
|
[18]
|
T. Ohno, T. Mitsui and M. Matsumura. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 2003, 32(4): 364-367.
|
[19]
|
D. I. Sayago, P. Serrano, O. Böhme, A. Goldoni, G. Paolucci, E. Román and J. A. Martín-Gago. Adsorption and desorption of SO2 on the TiO2(110)-(1 × 1) A photoemission study surface: A photoemission study. Physical Review B, 2001, 64: 2054021- 2054028.
|
[20]
|
J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi and C. Pulgarin. Escherichia coli inactivation by N, S co-doped com-mercial TiO2 powders under UV and visible light. Applied Catalysis B, 2008, 84(3-4): 448-456.
|
[21]
|
T. Umebayashi, T. Yamaki, S. Yamaoto, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. Journal of Applied Physics, 2003, 93(9): 5156-5160.
|
[22]
|
J. Baltru-saitis, P. M. Jayaweera and V. H. Grassian. Sulfur dioxide adsorption on TiO2 nanoparticles: Influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. Journal of Physical Chemistry C, 2011, 115(2): 492-500.
|
[23]
|
W. Ho, J. C. Yu and S. C. Lee. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006, 179(4): 1171-1176.
|
[24]
|
X. H. Tang, D. Y. Li. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. Journal of Physical Chemistry C, 2008, 112(14): 5405-5409.
|
[25]
|
E. M. Rockafellow, L. K. Stewart and W. S. Jenks. Is sulfur-doped TiO2 an effective visible light photocatalyst for remedia-tion. Applied Catalysis B, 2009, 91: 554-562.
|
[26]
|
S. H. Kang, S. H. Kim, J. Y. Kim and Y. E. Sung. Enhanced photocurrent of nitro-gen-doped TiO2 film for dye-sensitized solar cells. Materials Chemistry and Physics, 2010, 124(1): 422- 426.
|
[27]
|
S. Liu, X. Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazard Materials, 2008, 152(1): 48-55.
|
[28]
|
P. Prene. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Ad-vanced Materials, 2006, 18(19): 2579-2582.
|