[1]
|
Jin, N., Sha, W. and Gao, L. (2021) Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Frontiers in Cell and Developmental Biology, 9, Article 741368. https://doi.org/10.3389/fcell.2021.741368
|
[2]
|
Zhang, Z., Ma, J., Shah, W., Quan, X., Ding, T. and Gao, Y. (2025) Damage and Repair in Retinal Degenerative Diseases: Molecular Basis through Clinical Translation. Neural Regeneration Research, 21, 1383-1395. https://doi.org/10.4103/nrr.nrr-d-24-01016
|
[3]
|
王子璇, 王知斌, 孙延平, 等. 人参皂苷类成分的提取和精制研究进展[J]. 特产研究, 2025, 47(1): 156-160.
|
[4]
|
Xiang, Y., Shang, H., Gao, X. and Zhang, B. (2008) A Comparison of the Ancient Use of Ginseng in Traditional Chinese Medicine with Modern Pharmacological Experiments and Clinical Trials. Phytotherapy Research, 22, 851-858. https://doi.org/10.1002/ptr.2384
|
[5]
|
Lu, G., Liu, Z., Wang, X. and Wang, C. (2021) Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods, 10, Article 1030. https://doi.org/10.3390/foods10051030
|
[6]
|
Liu, Y., Xia, K., Liu, S., Wang, W. and Li, G. (2022) Ginseng as a Key Immune Response Modulator in Chinese Medicine: From Antipandemic History to COVID-19 Management. The American Journal of Chinese Medicine, 51, 19-34. https://doi.org/10.1142/s0192415x23500027
|
[7]
|
Fan, W., Huang, Y., Zheng, H., Li, S., Li, Z., Yuan, L., et al. (2020) Ginsenosides for the Treatment of Metabolic Syndrome and Cardiovascular Diseases: Pharmacology and Mechanisms. Biomedicine & Pharmacotherapy, 132, Article ID: 110915. https://doi.org/10.1016/j.biopha.2020.110915
|
[8]
|
Smith, I., Williamson, E.M., Putnam, S., Farrimond, J. and Whalley, B.J. (2014) Effects and Mechanisms of Ginseng and Ginsenosides on Cognition. Nutrition Reviews, 72, 319-333. https://doi.org/10.1111/nure.12099
|
[9]
|
Sabouri-Rad, S., Sabouri-Rad, S., Sahebkar, A. and Tayarani-Najaran, Z. (2017) Ginseng in Dermatology: A Review. Current Pharmaceutical Design, 23, 1649-1666. https://doi.org/10.2174/1381612822666161021152322
|
[10]
|
Li, J., Huang, Q., Chen, J., Qi, H., Liu, J., Chen, Z., et al. (2021) Neuroprotective Potentials of Panax ginseng against Alzheimer’s Disease: A Review of Preclinical and Clinical Evidences. Frontiers in Pharmacology, 12, Article 688490. https://doi.org/10.3389/fphar.2021.688490
|
[11]
|
李泽, 刘超然, 韩光红. 人参皂苷在口腔疾病治疗中促进硬组织形成的研究进展[J]. 现代口腔医学杂志, 2025, 39(2): 157-161.
|
[12]
|
Shin, K. and Oh, D. (2015) Classification of Glycosidases That Hydrolyze the Specific Positions and Types of Sugar Moieties in Ginsenosides. Critical Reviews in Biotechnology, 36, 1036-1049. https://doi.org/10.3109/07388551.2015.1083942
|
[13]
|
Fan, W., Fan, L., Wang, Z., Mei, Y., Liu, L., Li, L., et al. (2024) Rare Ginsenosides: A Unique Perspective of Ginseng Research. Journal of Advanced Research, 66, 303-328. https://doi.org/10.1016/j.jare.2024.01.003
|
[14]
|
Radad, K., Moldzio, R. and Rausch, W. (2010) Ginsenosides and Their CNS Targets. CNS Neuroscience & Therapeutics, 17, 761-768. https://doi.org/10.1111/j.1755-5949.2010.00208.x
|
[15]
|
González-Burgos, E., Fernandez-Moriano, C. and Gómez-Serranillos, M.P. (2014) Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review. Journal of Neuroimmune Pharmacology, 10, 14-29. https://doi.org/10.1007/s11481-014-9569-6
|
[16]
|
Yang, S., Wang, J., Cheng, P., Chen, L., Hu, J. and Zhu, G. (2022) Ginsenoside Rg1 in Neurological Diseases: From Bench to Bedside. Acta Pharmacologica Sinica, 44, 913-930. https://doi.org/10.1038/s41401-022-01022-1
|
[17]
|
Jang, W.Y., Hwang, J.Y. and Cho, J.Y. (2023) Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. International Journal of Molecular Sciences, 24, Article 6119. https://doi.org/10.3390/ijms24076119
|
[18]
|
Ong, W. (2015) Protective Effects of Ginseng on Neurological Disorders. Frontiers in Aging Neuroscience, 7, Article 129. https://doi.org/10.3389/fnagi.2015.00129
|
[19]
|
Ding, Y., Botchway, B.O.A., Zhang, Y. and Liu, X. (2023) Ginsenosides Can Target Brain-Derived Neurotrophic Factor to Improve Parkinson’s Disease. Food & Function, 14, 5537-5550. https://doi.org/10.1039/d2fo03484k
|
[20]
|
Zarneshan, S.N., Fakhri, S. and Khan, H. (2022) Targeting Akt/CREB/BDNF Signaling Pathway by Ginsenosides in Neurodegenerative Diseases: A Mechanistic Approach. Pharmacological Research, 177, Article ID: 106099. https://doi.org/10.1016/j.phrs.2022.106099
|
[21]
|
Liu, S., Chen, W., Zhao, Y., Zong, Y., Li, J. and He, Z. (2023) Research Progress on Effects of Ginsenoside Rg2 and Rh1 on Nervous System and Related Mechanisms. Molecules, 28, Article 7935. https://doi.org/10.3390/molecules28237935
|
[22]
|
Fleckenstein, M., Schmitz-Valckenberg, S. and Chakravarthy, U. (2024) Age-Related Macular Degeneration. JAMA, 331, 147-157. https://doi.org/10.1001/jama.2023.26074
|
[23]
|
Hanus, J., Anderson, C. and Wang, S. (2015) RPE Necroptosis in Response to Oxidative Stress and in AMD. Ageing Research Reviews, 24, 286-298. https://doi.org/10.1016/j.arr.2015.09.002
|
[24]
|
Marchesi, N., Capierri, M., Pascale, A. and Barbieri, A. (2024) Different Therapeutic Approaches for Dry and Wet AMD. International Journal of Molecular Sciences, 25, Article 13053. https://doi.org/10.3390/ijms252313053
|
[25]
|
Schultz, N.M., Bhardwaj, S., Barclay, C., Gaspar, L. and Schwartz, J. (2021) Global Burden of Dry Age-Related Macular Degeneration: A Targeted Literature Review. Clinical Therapeutics, 43, 1792-1818. https://doi.org/10.1016/j.clinthera.2021.08.011
|
[26]
|
齐思敏. 人参果总皂苷及人参皂苷Rg3对AMD视网膜病变的改善作用及机制研究[D]: [硕士学位论文]. 长春: 吉林农业大学, 2023.
|
[27]
|
Hu, R., Qi, S., Wang, Y., Li, W., Zou, W., Wang, Z., et al. (2024) Ginsenoside Rg3 Improved Age-Related Macular Degeneration through Inhibiting Ros-Mediated Mitochondrion-Dependent Apoptosis in Vivo and in Vitro. International Journal of Molecular Sciences, 25, Article 11414. https://doi.org/10.3390/ijms252111414
|
[28]
|
Kim, B.K., Kim, K., Kim, J., Jang, H. and Min, H. (2024) The Protective Effect of 20(s)-Ginsenoside Rg3 on the Human Retinal Pigment Epithelial Cells against Hydrogen Peroxide-Induced Oxidative Stress. Food Science and Biotechnology, 33, 3607-3616. https://doi.org/10.1007/s10068-024-01617-w
|
[29]
|
Betts, B.S., Parvathaneni, K., Yendluri, B.B., Grigsby, J. and Tsin, A.T.C. (2011) Ginsenoside-RB1 Induces ARPE-19 Proliferation and Reduces VEGF Release. ISRN Ophthalmology, 2011, Article ID: 184295. https://doi.org/10.5402/2011/184295
|
[30]
|
Wang, X., Xia, H., Qin, H., Kang, X., Hu, H., Zheng, J., et al. (2018) 20(s)‐Protopanaxadiol Induces Apoptosis in Human Umbilical Vein Endothelial Cells by Activating the Perk‐eIF2α‐ATF4 Signaling Pathway. Journal of Cellular Biochemistry, 120, 5085-5096. https://doi.org/10.1002/jcb.27785
|
[31]
|
Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. The Lancet, 376, 124-136. https://doi.org/10.1016/s0140-6736(09)62124-3
|
[32]
|
Nishikawa, K., Murakami, T., Yoshida, M., Terada, N., Ishihara, K., Mori, Y., et al. (2024) Extracellular Mitochondria Exacerbate Retinal Pigment Epithelium Degeneration in Diabetic Retinopathy. Diabetes, 74, 409-415. https://doi.org/10.2337/db24-0040
|
[33]
|
Hammes, H. (2017) Diabetic Retinopathy: Hyperglycaemia, Oxidative Stress and Beyond. Diabetologia, 61, 29-38. https://doi.org/10.1007/s00125-017-4435-8
|
[34]
|
O’Leary, F. and Campbell, M. (2021) The Blood-Retina Barrier in Health and Disease. The FEBS Journal, 290, 878-891. https://doi.org/10.1111/febs.16330
|
[35]
|
Dong, C., Liu, P., Wang, H., Dong, M., Li, G. and Li, Y. (2019) Ginsenoside Rb1 Attenuates Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats. Acta Cirurgica Brasileira, 34, e201900201. https://doi.org/10.1590/s0102-8650201900201
|
[36]
|
Fan, C., Ma, Q., Xu, M., Qiao, Y., Zhang, Y., Li, P., et al. (2019) Ginsenoside Rb1 Attenuates High Glucose-Induced Oxidative Injury via the NAD-PARP-SIRT Axis in Rat Retinal Capillary Endothelial Cells. International Journal of Molecular Sciences, 20, Article 4936. https://doi.org/10.3390/ijms20194936
|
[37]
|
Ying, Y., Zhang, Y., Ma, C., Li, M., Tang, C., Yang, Y., et al. (2019) Neuroprotective Effects of Ginsenoside Rg1 against Hyperphosphorylated Tau-Induced Diabetic Retinal Neurodegeneration via Activation of IRS-1/Akt/GSK3β Signaling. Journal of Agricultural and Food Chemistry, 67, 8348-8360. https://doi.org/10.1021/acs.jafc.9b02954
|
[38]
|
李彬, 张大传, 李学望, 等. 人参皂苷Rg1抑制NLRP3炎症小体对2型糖尿病小鼠视网膜病变的保护作用[J]. 中国中药杂志, 2022, 47(2): 476-483.
|
[39]
|
李玉. 人参皂苷Rg1对糖尿病视网膜病变TGF-β/Smad信号通路调控机制[D]: [硕士学位论文]. 昆明: 昆明医科大学, 2018.
|
[40]
|
Xue, L., Hu, M., Li, Y., Zhu, Q., Zhou, G., Zhang, X., et al. (2025) Ginsenoside Rg1 Inhibits Angiogenesis in Diabetic Retinopathy through the miR‐100‐3p/FBXW7/c‐MYC Molecular Axis. Journal of Diabetes Investigation, 16, 791-806. https://doi.org/10.1111/jdi.70016
|
[41]
|
Tang, K., Qin, W., Wei, R., Jiang, Y., Fan, L., Wang, Z., et al. (2022) Ginsenoside Rd Ameliorates High Glucose-Induced Retinal Endothelial Injury through AMPK-STRT1 Interdependence. Pharmacological Research, 179, Article ID: 106123. https://doi.org/10.1016/j.phrs.2022.106123
|
[42]
|
Tang, K., Huang, C., Huang, Z., Wang, Z. and Tan, N. (2025) GPR30-driven Fatty Acid Oxidation Targeted by Ginsenoside Rd Maintains Mitochondrial Redox Homeostasis to Restore Vascular Barrier in Diabetic Retinopathy. Cardiovascular Diabetology, 24, Article No. 121. https://doi.org/10.1186/s12933-025-02638-3
|
[43]
|
Liu, J., Zhang, Y., Xu, X., Dong, X., Pan, Y., Sun, X., et al. (2025) Ginsenoside Ro Prevents Endothelial Injury via Promoting Epac1/AMPK-Mediated Mitochondria Protection in Early Diabetic Retinopathy. Pharmacological Research, 211, Article ID: 107562. https://doi.org/10.1016/j.phrs.2024.107562
|
[44]
|
Li, W., Li, K., Chang, W., Shi, H., Zhang, W., Wang, Z., et al. (2024) 20(r)-Ginsenoside Rg3 Alleviates Diabetic Retinal Injury in T2DM Mice by Attenuating Ros-Mediated ER Stress through the Activation of the Nrf2/HO-1 Axis. Phytomedicine, 135, Article ID: 156202. https://doi.org/10.1016/j.phymed.2024.156202
|
[45]
|
季青璇, 彭美中, 马盼, 等. 人参皂苷Rb3对高糖诱导的内皮细胞迁移和增殖及糖尿病小鼠视网膜功能的影响[J]. 辽宁中医药大学学报, 2023, 25(12): 24-29.
|
[46]
|
Sun, H.Q. and Zhou, Z.Y. (2010) Effect of Ginsenoside-Rg3 on the Expression of VEGF and TNF-α in Retina with Diabetic Rats. International Journal of Ophthalmology, 3, 220-223.
|
[47]
|
刘卓容, 宋勇丽, 宁尚秋, 等. 基于YAP/TLRs通路探讨人参皂苷Rg2对糖尿病视网膜病及血管增生的作用机制[J]. 中国中药杂志, 2025, 50(6): 1659-1669.
|
[48]
|
Lee, J., Nguyen, S. and Bhattacharya, S. (2024) Optic Nerve Regeneration: Potential Treatment Approaches. Current Opinion in Pharmacology, 74, Article ID: 102428. https://doi.org/10.1016/j.coph.2023.102428
|
[49]
|
Shukla, U.V and Tripathy, K. (2025) Diabetic Retinopathy. StatPearls.
|
[50]
|
Qi, X., Lewin, A.S., Sun, L., Hauswirth, W.W. and Guy, J. (2007) Suppression of Mitochondrial Oxidative Stress Provides Long-Term Neuroprotection in Experimental Optic Neuritis. Investigative Ophthalmology & Visual Science, 48, 681-691. https://doi.org/10.1167/iovs.06-0553
|
[51]
|
Jiang, Y., Wei, R., Tang, K., Wang, Z. and Tan, N. (2024) Ginsenoside Rg1 Promotes Neurite Growth of Retinal Ganglion Cells through cAMP/PKA/CREB Pathways. Journal of Ginseng Research, 48, 163-170. https://doi.org/10.1016/j.jgr.2022.05.002
|
[52]
|
王凡寅. 人参皂甙Rg1对H2O2 (过氧化氢)诱导视网膜神经节细胞损伤的作用探讨[D]: [硕士学位论文]. 深圳: 暨南大学, 2015.
|
[53]
|
Zhou, M., Xie, Y., Zhou, J., Kuang, X., Shen, H. and Long, C. (2023) Protective Effect of Ginsenoside Rg1 on 661W Cells Exposed to Oxygen-Glucose Deprivation/Reperfusion via Keap1/Nrf2 Pathway. International Journal of Ophthalmology, 16, 1026-1033. https://doi.org/10.18240/ijo.2023.07.04
|
[54]
|
唐平, 陈春妹, 陈执, 等. 人参皂苷Rg1治疗高糖损伤大鼠视神经细胞的机制研究: 基于生物信息学分析[J]. 眼科新进展, 2021, 41(10): 920-924.
|
[55]
|
Wang, L., Cao, T. and Chen, H. (2017) Treatment of Glaucomatous Optic Nerve Damage Using Ginsenoside Rg1 Mediated by Ultrasound Targeted Microbubble Destruction. Experimental and Therapeutic Medicine, 15, 300-304. https://doi.org/10.3892/etm.2017.5386
|
[56]
|
黄波, 顾宝文, 应方薇, 等. 人参皂苷Rg1对实验性视神经挫伤保护作用的研究[J]. 中华眼外伤职业眼病杂志, 2012, 34(1): 4.
|
[57]
|
胡楚璇, 李穗华, 张霞, 等. 人参皂苷Rg1对大鼠视神经损伤的保护作用研究[J]. 中国医药导报, 2018, 15(3): 17-21.
|
[58]
|
常捷, 徐静, 杜霄烨, 等. 人参干预光氧化应激介导的光感受器退行性病变研究[J]. 中华中医药杂志, 2024, 39(5): 2587-2591.
|
[59]
|
Chang, J., Wang, Y., Xu, J., Du, X., Cui, J., Zhang, T., et al. (2023) Ginsenoside Re Mitigates Photooxidative Stress-Mediated Photoreceptor Degeneration and Retinal Inflammation. Journal of Neuroimmune Pharmacology, 18, 397-412. https://doi.org/10.1007/s11481-023-10073-y
|
[60]
|
Bian, M., Du, X., Wang, P., Cui, J., Xu, J., Gu, J., et al. (2017) Combination of Ginsenoside Rb1 and Rd Protects the Retina against Bright Light-Induced Degeneration. Scientific Reports, 7, Article No. 6015. https://doi.org/10.1038/s41598-017-06471-x
|
[61]
|
侯阳, 刘学政. 人参茎叶总皂苷对大鼠MNU所致视网膜色素变性的作用[J]. 锦州医科大学学报, 2020, 41(4): 1-4, 17.
|
[62]
|
Zhou, J., Zhao, D., Niu, S., Meng, W., Chen, Z., Li, H., et al. (2025) RGD-Functionalized Ginsenoside Rg3 Liposomes for Alleviating Oxidative Stress and Choroidal Neovascularization in Age-Related Macular Degeneration. International Journal of Nanomedicine, 20, 7915-7933. https://doi.org/10.2147/ijn.s520756
|
[63]
|
Tang, H., Li, X., Li, C., Shen, W., Jin, L., Zhou, Y., et al. (2025) Sequential Delivery of Anti-Inflammatory and Anti-Scar Drugs by Rg3 Liposome-Embedded Thiolated Chitosan Hydrogel Eye Drops for Corneal Alkali Burn. Carbohydrate Polymers, 361, Article ID: 123626. https://doi.org/10.1016/j.carbpol.2025.123626
|
[64]
|
Li, M., Lan, J., Li, X., Xin, M., Wang, H., Zhang, F., et al. (2019) Novel Ultra-Small Micelles Based on Ginsenoside Rb1: A Potential Nanoplatform for Ocular Drug Delivery. Drug Delivery, 26, 481-489. https://doi.org/10.1080/10717544.2019.1600077
|