[1]
|
Coulam, C.B., Adamson, S.C. and Annegers, J.F. (1986) Incidence of Premature Ovarian Failure. Obstetrics & Gynecology, 67, 604-606.
|
[2]
|
Li, M., Zhu, Y., Wei, J., Chen, L., Chen, S. and Lai, D. (2022) The Global Prevalence of Premature Ovarian Insufficiency: A Systematic Review and Meta-analysis. Climacteric, 26, 95-102. https://doi.org/10.1080/13697137.2022.2153033
|
[3]
|
Webber, L., Davies, M., et al. (2016) ESHRE Guideline: Management of Women with Premature Ovarian Insufficiency. Human Reproduction, 31, 926-937.
|
[4]
|
中华医学会妇产科学分会绝经学组. 早发性卵巢功能不全的临床诊疗专家共识(2023版) [J]. 中华妇产科杂志, 2023, 58(10): 721-728.
|
[5]
|
Yang, Q., Mumusoglu, S., Qin, Y., Sun, Y. and Hsueh, A.J. (2021) A Kaleidoscopic View of Ovarian Genes Associated with Premature Ovarian Insufficiency and Senescence. The FASEB Journal, 35, e21753. https://doi.org/10.1096/fj.202100756r
|
[6]
|
Vujovic, S. (2009) Aetiology of Premature Ovarian Failure. Menopause International, 15, 72-75. https://doi.org/10.1258/mi.2009.009020
|
[7]
|
Hsueh, A.J.W., Kawamura, K., Cheng, Y. and Fauser, B.C.J.M. (2015) Intraovarian Control of Early Folliculogenesis. Endocrine Reviews, 36, 1-24. https://doi.org/10.1210/er.2014-1020
|
[8]
|
胡立桥, 周兆才, 田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674.
|
[9]
|
Clark, K.L., George, J.W., Przygrodzka, E., Plewes, M.R., Hua, G., Wang, C., et al. (2022) Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocrine Reviews, 43, 1074-1096. https://doi.org/10.1210/endrev/bnac013
|
[10]
|
Yu, F., Zhao, B. and Guan, K. (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 163, 811-828. https://doi.org/10.1016/j.cell.2015.10.044
|
[11]
|
Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Development, 21, 2747-2761. https://doi.org/10.1101/gad.1602907
|
[12]
|
Lv, X., He, C., Huang, C., Wang, H., Hua, G., Wang, Z., et al. (2019) Timely Expression and Activation of YAP1 in Granulosa Cells Is Essential for Ovarian Follicle Development. The FASEB Journal, 33, 10049-10064. https://doi.org/10.1096/fj.201900179rr
|
[13]
|
Lyu, Z., Qin, N., Tyasi, T.L., Zhu, H., Liu, D., Yuan, S., et al. (2016) The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary. PLOS ONE, 11, e0160896. https://doi.org/10.1371/journal.pone.0160896
|
[14]
|
Li, J., Luo, W., Huang, T. and Gong, Y. (2019) Growth Differentiation Factor 9 Promotes Follicle-Stimulating Hormone-Induced Progesterone Production in Chicken Follicular Granulosa Cells. General and Comparative Endocrinology, 276, 69-76. https://doi.org/10.1016/j.ygcen.2019.03.005
|
[15]
|
Sun, T., Pepling, M.E. and Diaz, F.J. (2015) Lats1 Deletion Causes Increased Germ Cell Apoptosis and Follicular Cysts in Mouse Ovaries. Biology of Reproduction, 93, Article No. 22. https://doi.org/10.1095/biolreprod.114.118604
|
[16]
|
St John, M.A.R., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., et al. (1999) Mice Deficient of Lats1 Develop Soft-Tissue Sarcomas, Ovarian Tumours and Pituitary Dysfunction. Nature Genetics, 21, 182-186. https://doi.org/10.1038/5965
|
[17]
|
Tsoi, M., Morin, M., Rico, C., Johnson, R.L., Paquet, M., Gévry, N., et al. (2019) Lats1 and Lats2 Are Required for Ovarian Granulosa Cell Fate Maintenance. The FASEB Journal, 33, 10819-10832. https://doi.org/10.1096/fj.201900609r
|
[18]
|
Sun, X., Niu, X., Qin, N., Shan, X., Zhao, J., Ma, C., et al. (2021) Novel Insights into the Regulation of LATS2 Kinase in Prehierarchical Follicle Development via the Hippo Pathway in Hen Ovary. Poultry Science, 100, Article ID: 101454. https://doi.org/10.1016/j.psj.2021.101454
|
[19]
|
Yu, H., Yang, Z., Xu, M., Huang, J., Yue, Z. and Guo, B. (2022) Yap Is Essential for Uterine Decidualization through Rrm2/gsh/ros Pathway in Response to Bmp2. International Journal of Biological Sciences, 18, 2261-2276. https://doi.org/10.7150/ijbs.67756
|
[20]
|
Lv, X., He, C., Huang, C., Hua, G., Chen, X., Timm, B.K., et al. (2020) Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Science Bulletin, 65, 1281-1296. https://doi.org/10.1016/j.scib.2020.03.040
|
[21]
|
Hu, L., Su, T., Luo, R., Zheng, Y., Huang, J., Zhong, Z., et al. (2018) Hippo Pathway Functions as a Downstream Effector of AKT Signaling to Regulate the Activation of Primordial Follicles in Mice. Journal of Cellular Physiology, 234, 1578-1587. https://doi.org/10.1002/jcp.27024
|
[22]
|
Ye, H., Li, X., Zheng, T., Hu, C., Pan, Z., Huang, J., et al. (2017) The Hippo Signaling Pathway Regulates Ovarian Function via the Proliferation of Ovarian Germline Stem Cells. Cellular Physiology and Biochemistry, 41, 1051-1062. https://doi.org/10.1159/000464113
|
[23]
|
Dupont, J. and Scaramuzzi, R.J. (2016) Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochemical Journal, 473, 1483-1501. https://doi.org/10.1042/bcj20160124
|
[24]
|
Enzo, E., Santinon, G., Pocaterra, A., Aragona, M., Bresolin, S., Forcato, M., et al. (2015) Aerobic Glycolysis Tunes YAP/TAZ Transcriptional Activity. The EMBO Journal, 34, 1349-1370. https://doi.org/10.15252/embj.201490379
|
[25]
|
Leroy, J.L.M.R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005) Non-Esterified Fatty Acids in Follicular Fluid of Dairy Cows and Their Effect on Developmental Capacity of Bovine Oocytes in Vitro. Reproduction, 130, 485-495. https://doi.org/10.1530/rep.1.00735
|
[26]
|
Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., et al. (2014) Metabolic Control of YAP and TAZ by the Mevalonate Pathway. Nature Cell Biology, 16, 357-366. https://doi.org/10.1038/ncb2936
|
[27]
|
Cox, A.G., Hwang, K.L., Brown, K.K., Evason, K.J., Beltz, S., Tsomides, A., et al. (2016) Yap Reprograms Glutamine Metabolism to Increase Nucleotide Biosynthesis and Enable Liver Growth. Nature Cell Biology, 18, 886-896. https://doi.org/10.1038/ncb3389
|
[28]
|
Yang, C., Stampouloglou, E., Kingston, N.M., Zhang, L., Monti, S. and Varelas, X. (2018) Glutamine‐Utilizing Transaminases Are a Metabolic Vulnerability of TAZ/YAP‐Activated Cancer Cells. EMBO reports, 19, e43577. https://doi.org/10.15252/embr.201643577
|
[29]
|
Zhang, X., Zhao, H., Li, Y., Xia, D., Yang, L., Ma, Y., et al. (2018) The Role of YAP/TAZ Activity in Cancer Metabolic Reprogramming. Molecular Cancer, 17, Article No. 134. https://doi.org/10.1186/s12943-018-0882-1
|
[30]
|
Cheng, F., Wang, J., Wang, R., Pan, R., Cui, Z., Wang, L., et al. (2024) FGF2 Promotes the Proliferation of Injured Granulosa Cells in Premature Ovarian Failure via Hippo-Yap Signaling Pathway. Molecular and Cellular Endocrinology, 589, Article ID: 112248. https://doi.org/10.1016/j.mce.2024.112248
|
[31]
|
Luo, J. and Sun, Z. (2023) MicroRNAs in POI, DOR and Por. Archives of Gynecology and Obstetrics, 308, 1419-1430. https://doi.org/10.1007/s00404-023-06922-z
|
[32]
|
Maher, J.Y., Islam, M.S., Yin, O., Brennan, J., Gough, E., Driggers, P., et al. (2022) The Role of Hippo Pathway Signaling and A-Kinase Anchoring Protein 13 in Primordial Follicle Activation and Inhibition. F&S Science, 3, 118-129. https://doi.org/10.1016/j.xfss.2022.03.002
|
[33]
|
Ernst, E.H., Grøndahl, M.L., Grund, S., Hardy, K., Heuck, A., Sunde, L., et al. (2017) Dormancy and Activation of Human Oocytes from Primordial and Primary Follicles: Molecular Clues to Oocyte Regulation. Human Reproduction, 32, 1684-1700. https://doi.org/10.1093/humrep/dex238
|
[34]
|
Kawamura, K., Cheng, Y., Suzuki, N., Deguchi, M., Sato, Y., Takae, S., et al. (2013) Hippo Signaling Disruption and AKT Stimulation of Ovarian Follicles for Infertility Treatment. Proceedings of the National Academy of Sciences of the United States of America, 110, 17474-17479. https://doi.org/10.1073/pnas.1312830110
|
[35]
|
Pankhurst, M.W. (2017) A Putative Role for Anti-Müllerian Hormone (AMH) in Optimising Ovarian Reserve Expenditure. Journal of Endocrinology, 233, R1-R13. https://doi.org/10.1530/joe-16-0522
|
[36]
|
Liu, W., Zhang, J., Wang, L., Liang, S., Xu, B., Ying, X., et al. (2021) The Protective Effects of Rapamycin Pretreatment on Ovarian Damage during Ovarian Tissue Cryopreservation and Transplantation. Biochemical and Biophysical Research Communications, 534, 780-786. https://doi.org/10.1016/j.bbrc.2020.10.110
|
[37]
|
Goldman, K.N., Chenette, D., Arju, R., Duncan, F.E., Keefe, D.L., Grifo, J.A., et al. (2017) mTORC1/2 Inhibition Preserves Ovarian Function and Fertility during Genotoxic Chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 114, 3186-3191. https://doi.org/10.1073/pnas.1617233114
|
[38]
|
Zhang, J.M., Lu, X.L. and Wang, H.X. (2020) Inhibition of mTORC1 Signaling Pathway Is a Valid Therapeutic Strategy in Transplantation of Cryopreserved Mouse Ovarian Tissue. CryoLetters, 41, 38-43.
|
[39]
|
Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W. and DePinho, R.A. (2003) Suppression of Ovarian Follicle Activation in Mice by the Transcription Factor Foxo3a. Science, 301, 215-218. https://doi.org/10.1126/science.1086336
|
[40]
|
Lee, H.N. and Chang, E.M. (2019) Primordial Follicle Activation as New Treatment for Primary Ovarian Insufficiency. Clinical and Experimental Reproductive Medicine, 46, 43-49. https://doi.org/10.5653/cerm.2019.46.2.43
|
[41]
|
Halder, G., Dupont, S. and Piccolo, S. (2012) Transduction of Mechanical and Cytoskeletal Cues by YAP and Taz. Nature Reviews Molecular Cell Biology, 13, 591-600. https://doi.org/10.1038/nrm3416
|
[42]
|
Gumbiner, B.M. and Kim, N. (2014) The Hippo-Yap Signaling Pathway and Contact Inhibition of Growth. Journal of Cell Science, 127, 709-717. https://doi.org/10.1242/jcs.140103
|
[43]
|
Díaz-García, C., Herraiz, S., Pamplona, L., Subirá, J., Soriano, M.J., Simon, C., et al. (2022) Follicular Activation in Women Previously Diagnosed with Poor Ovarian Response: A Randomized, Controlled Trial. Fertility and Sterility, 117, 747-755. https://doi.org/10.1016/j.fertnstert.2021.12.034
|
[44]
|
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011) Role of YAP/TAZ in Mechanotransduction. Nature, 474, 179-183. https://doi.org/10.1038/nature10137
|
[45]
|
Shah, J.S., Sabouni, R., Cayton Vaught, K.C., Owen, C.M., Albertini, D.F. and Segars, J.H. (2018) Biomechanics and Mechanical Signaling in the Ovary: A Systematic Review. Journal of Assisted Reproduction and Genetics, 35, 1135-1148. https://doi.org/10.1007/s10815-018-1180-y
|
[46]
|
De Roo, C., Lierman, S., Tilleman, K. and De Sutter, P. (2020) In-Vitro Fragmentation of Ovarian Tissue Activates Primordial Follicles through the Hippo Pathway. Human Reproduction Open, 2020, hoaa048. https://doi.org/10.1093/hropen/hoaa048
|
[47]
|
Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., et al. (2013) Mechanotransduction and Yap-Dependent Matrix Remodelling Is Required for the Generation and Maintenance of Cancer-Associated Fibroblasts. Nature Cell Biology, 15, 637-646. https://doi.org/10.1038/ncb2756
|
[48]
|
Huang, Q., Liu, B., Jiang, R., Liao, S., Wei, Z., Bi, Y., et al. (2019) G-CSF-Mobilized Peripheral Blood Mononuclear Cells Combined with Platelet-Rich Plasma Accelerate Restoration of Ovarian Function in Cyclophosphamide-Induced POI Rats. Biology of Reproduction, 101, 91-101. https://doi.org/10.1093/biolre/ioz077
|
[49]
|
Vural, B., Duruksu, G., Vural, F., Gorguc, M. and Karaoz, E. (2019) Effects of VEGF + Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Reviews and Reports, 15, 558-573. https://doi.org/10.1007/s12015-019-09892-5
|
[50]
|
Song, D., Zhong, Y., Qian, C., Zou, Q., Ou, J., Shi, Y., et al. (2016) Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model. BioMed Research International, 2016, Article ID: 2517514. https://doi.org/10.1155/2016/2517514
|
[51]
|
Mohamed, S.A., Shalaby, S., Brakta, S., Elam, L., Elsharoud, A. and Al-Hendy, A. (2019) Umbilical Cord Blood Mesenchymal Stem Cells as an Infertility Treatment for Chemotherapy Induced Premature Ovarian Insufficiency. Biomedicines, 7, Article 7. https://doi.org/10.3390/biomedicines7010007
|
[52]
|
Ling, L., Feng, X., Wei, T., Wang, Y., Wang, Y., Wang, Z., et al. (2019) Human Amnion-Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation Improves Ovarian Function in Rats with Premature Ovarian Insufficiency (POI) at Least Partly through a Paracrine Mechanism. Stem Cell Research & Therapy, 10, Article No. 46. https://doi.org/10.1186/s13287-019-1136-x
|
[53]
|
Elfayomy, A.K., Almasry, S.M., El-Tarhouny, S.A. and Eldomiaty, M.A. (2016) Human Umbilical Cord Blood-Mesenchymal Stem Cells Transplantation Renovates the Ovarian Surface Epithelium in a Rat Model of Premature Ovarian Failure: Possible Direct and Indirect Effects. Tissue and Cell, 48, 370-382. https://doi.org/10.1016/j.tice.2016.05.001
|
[54]
|
Fu, X., He, Y., Xie, C. and Liu, W. (2008) Bone Marrow Mesenchymal Stem Cell Transplantation Improves Ovarian Function and Structure in Rats with Chemotherapy-Induced Ovarian Damage. Cytotherapy, 10, 353-363. https://doi.org/10.1080/14653240802035926
|