Hippo信号通路与早发性卵巢功能不全的相关性研究
Research on the Correlation between the Hippo Signaling Pathway and Premature Ovarian Insufficiency
DOI: 10.12677/md.2025.154062, PDF, HTML, XML,   
作者: 王 吉:延安大学医学院,陕西 延安;岳红云*:延安大学附属医院妇产科,陕西 延安
关键词: 早发性卵巢功能不全Hippo信号通路治疗Yes相关蛋白Premature Ovarian Insufficiency Hippo Signaling Pathway Treatment YAP
摘要: 早发性卵巢功能不全(POI)是育龄期妇女常见的生殖内分泌疾病之一,其发病机制不明、治疗效果差、近远期并发症严重,极大影响女性健康。预防及治疗早发性卵巢功能不全,研究其发生发展机制至关重要。Hippo信号通路通过调节细胞增殖/凋亡来调节器官大小,在POI发病及治疗中发挥重要作用。本文对近年来通过Hippo信号通路治疗POI的研究现状进行综述,以期为进一步研究POI提供新的方向和思考。
Abstract: Premature ovarian insufficiency (POI) is one of the common reproductive endocrine diseases in women of childbearing age. The pathogenesis is unknown, the therapeutic effect is poor, and the short-term and long-term complications are serious, which seriously affects the health of women. It is very important to study the mechanism of the prevention and treatment of premature ovarian insufficiency. Hippo signaling pathway regulates organ size by regulating cell proliferation/apoptosis, and plays an important role in the pathogenesis and treatment of POI. This article reviews the current research status of Hippo signaling pathway in the treatment of POI in recent years, in order to provide a new direction and thinking for further study of POI.
文章引用:王吉, 岳红云. Hippo信号通路与早发性卵巢功能不全的相关性研究[J]. 医学诊断, 2025, 15(4): 459-466. https://doi.org/10.12677/md.2025.154062

1. 引言

早发性卵巢功能不全是卵巢功能衰退至一定阶段所发生的疾病状态,同时包含有功能性及器质性病变。随着社会环境的改变,早发性卵巢功能不全在年轻女性中发病率逐渐增高,严重影响女性生理与心理健康的同时,还会造成不孕不育的发生。对早发性卵巢功能不全相关信号通路的研究,为疾病病因发病机制、恢复卵巢功能与相关药物研发具有重要意义。Hippo信号通路调节细胞生长、增殖和凋亡,调控组织器官大小和组织再生,并在胚胎发育和组织器官形成中发挥重要作用。本文旨在对Hippo信号通路与早发性卵巢功能不全的相关性研究进展做一综述,以期为临床诊治疾病提供一定参考。

2. 早发性卵巢功能不全

早发性卵巢功能不全(premature ovarian insufficiency, POI),其发病率约为1%~4% [1],全球发病率约为3.5% [2],其定义为女性在40岁以前出现卵巢功能减退,甚至卵巢功能衰竭,主要表现为月经异常(闭经、月经稀发或频发)、卵泡刺激素(follicle stimulating hormone, FSH) > 25 U/L以及雌激素水平波动性下降[3]。患者由于长期月经异常,血清促性腺激素水平升高,雌激素水平降低,造成心血管系统、神经系统、泌尿生殖系统以及骨损害,严重损害患者的身心健康[4]

目前研究认为,导致POI的主要病因为X染色体及常染色体异常和基因缺陷、DNA损伤修复及同源重组相关的基因突变,自身免疫功能紊乱所致的卵巢损伤,放疗、化疗以及外科手术等导致的医源性损伤,感染、环境及不良生活习惯影响,代谢相关如半乳糖血症、17羟化酶缺乏症等[5] [6]

目前研究表明,Hippo信号通路限制卵泡生长,干扰Hippo信号通路,会促进下游CCN生长因子的分泌,促使卵巢休眠途径失活,能够促进卵泡生长[7]。目前,大量临床研究表明通过调控Hippo信号通路,可以调节卵巢功能,促进POI的缓解。现将Hippo信号通路参与POI治疗的相关研究进行综述。

Hippo信号通路

Hippo信号通路最早发现于果蝇中,后续研究发现Hippo信号通路也存在于人类和哺乳动物中,其核心成员在各种属中高度保守[8],通过调控细胞增殖、分化、凋亡以及干细胞自我更新来调节器官大小[9]。哺乳动物Hippo信号通路主要由哺乳动物不育系20样激酶1/2 (mammalian sterile 20-like kinases1/2, MST1/2)、萨尔瓦多家族含WW结构域蛋白1 (salvador homolog1, SAV1)、大肿瘤抑制因子1/2 (large tumor suppressor 1/2, LATS1/2)、MOB激酶激活因子1A/B (MOB kinase activator 1A/B, MOB1)、Yes相关蛋白(Yes associated protein, YAP)/含PDZ结合基序的转录共激活因子(transcriptional coactivator with PDZ-binding motif, TAZ)、TEA结构域1-4 (TEA domain1-4, TEAD1-4)等组成[10]。经典的Hippo信号通路可以概括为:上游复合物活化MST1/2,进而磷酸化下游LATS1/2,后者磷酸化转录共激活因子YAP/TAZ。Hippo信号通路激活时,磷酸化的YAP/TAZ与14-3-3蛋白结合进而留在细胞质中被酶降解,抑制YAP/TAZ转录共激活作用,从而抑制细胞增殖,促进细胞凋亡。相反,阻断Hippo信号通路或该通路核心成员缺失,会导致未磷酸化的YAP/TAZ进入细胞核,在细胞核中积累的YAP/TAZ可以与许多转录因子结合调控基因表达,从而促进细胞增殖,抑制细胞凋亡[11]。YAP/TAZ属于转录共激活因子,本身不含DNA结合位点,只有通过与DNA转录因子(如:TEAD1-4家族)结合,才能介导靶基因的表达调控。

1. 卵巢中的Hippo信号通路

(1) Hippo信号通路在细胞中的定位:MST1/2、LATS1/2、YAP1和磷酸化的YAP1存在于卵母细胞、颗粒细胞和卵泡膜细胞的所有卵泡阶段(原始、初级、次级、窦),同时也存在于一些闭锁卵泡和黄体中[9]。研究发现,在哺乳动物卵巢的颗粒细胞和黄体细胞中观测到Hippo/YAP的表达,从初级阶段到排卵前阶段,YAP定位于颗粒细胞的细胞核中;在分化的黄体中,YAP定位于细胞质中[12]。体外研究观察到,LAST2、MST1以及YAP1在分离的小鼠卵巢干细胞中共表达,小鼠卵巢干细胞表达生殖细胞标记物小鼠输精管同源物(Mvh;也被称为DEAD box protein4,DDX4)。

(2) 调节卵泡发育:体外研究显示,SAV1不能单独磷酸化下游LATS1,其与MST1/2结合,可促进LAST1的磷酸化。在禽类卵泡发育过程中,SAV1 mRNA转录产物水平在小卵泡(<1 mm)中最高,同时随着卵泡的发育而下降。SAV1在母鸡颗粒细胞中促进Hippo信号的传导,其过表达会降低细胞增殖,并下调FSHR、类固醇急性调节蛋白(STAR)和生长分化因子9 (GDF9)的mRNA转录本。使用小干扰RNA (siRNA)减毒Hippo激活基因敲低SAV1,会导致YAP1活性增加,导致FSHR、STAR和GDF9 mRNA表达增加,颗粒细胞增殖增加。以上研究结果与哺乳动物卵巢相关,因为FSHR的表达对卵泡的发育至关重要,GDF9已被证明可以促进FSH诱导的黄体酮的产生以及STAR的上调[14],STAR是类固醇生成所必需的蛋白质。以上研究表明,Hippo成分SAV1/MST1/2可能在卵巢颗粒细胞增殖中起抑制作用,有助于阻止卵泡发育过程中的卵泡选择。Hippo信号的SAV1激活可能限制了YAP1的活性,从而减少了卵巢中颗粒细胞的增殖。

LATS1蛋白激酶位于MST1/2下游,负责磷酸化Hippo信号通路的效应物YAP1以及TAZ。有研究显示,Lats1等位基因的整体丢失不会影响突变卵巢和野生型小鼠卵巢出生时生殖细胞的数量,但随着小鼠年龄的增长,观察到更大的生殖细胞凋亡,这导致卵泡过早丢失。此外,体外培养的Lats1-/-新生小鼠卵巢显示异常卵泡发育、原始卵泡和活化卵泡减少及卵巢囊肿发育[15]。同样,Lats1-/-成年卵巢显示卵泡数量减少,虽然颗粒细胞凋亡较少。此外,成年卵巢缺乏黄体,表明排卵中断[16]。靶向删除LATS1和LATS2,会导致颗粒细胞的身份以及功能丧失,同时伴有颗粒细胞形态的改变。研究显示,颗粒细胞特异性缺失LATS1和LATS2,可观察到卵巢早衰,表现为卵巢增大(与野生型相比约10倍)、不育表型、颗粒细胞多系转分化为生精小管样结构和骨,这提示上皮细胞向间质转化。禽类颗粒细胞中LATS2的敲低降低了MST1、MST2、TEAD1和TEAD3的mRNA转录量,同时增加了YAP1和SAV1mRNA 的转录量[18]。综上所诉,Hippo信号通路中的LATS蛋白激酶在卵巢卵泡发育过程中维持卵巢稳态有重要作用。

多数研究集中于Hippo信号通路的下游效应因子YAP1。Hippo信号通路导致YAP1和TAZ的磷酸化,导致细胞质中的转录共调解因子的隔离。对于KGN人颗粒细胞瘤系的研究表明,强制表达野生型YAP1或组成型YAP1S127A (此突变可以阻止YAP磷酸化并维持其活性)会刺激颗粒细胞增殖。相反,在原代人颗粒细胞培养物和KGN细胞中,敲低YAP1或者药理抑制YAP1/TADE的相互作用,可抑制细胞增殖给予促进细胞凋亡[20]。由此可见,抑制Hippo信号通路对颗粒细胞增殖至关重要。小鼠的遗传学研究为YAP1在卵巢卵泡发育中的重要作用提供了证据。研究显示,小鼠颗粒细胞特异性缺失YAP1会破坏卵巢卵泡发育,导致卵巢体积减小,卵泡闭锁增加,减少产仔数和后代数量。同时,Hippo信号通路的破坏与卵泡激活相关。在体外培养的小鼠卵巢中,敲低YAP1,会抑制卵泡的生长,导致原始卵泡增多,初级卵泡减少,而YAP1的过表达会导致卵泡激活[21]。相反,在化疗诱导不育小鼠模型中,YAP1的过表达增加了卵巢表面上皮的厚度,增加卵泡了的募集[22]。由此可见,Hippo信号通路的激活,会导致颗粒细胞增殖停止,其抑制会导致YAP1的激活以及颗粒细胞的增殖,并导致后续的卵泡生长。同时YAP1的异常表达会潜在破坏卵泡发育和卵巢的整体稳态。

(3) 调节三大物质代谢

Hippo信号通路通过调节卵巢三大物质代谢——葡萄糖代谢、甲羟戊酸代谢和谷氨酰胺代谢,为卵巢的生长发育提供必须的物质和能量,同时参与卵泡生长、成熟和卵子的发育。

卵泡的生长和成熟、卵子的发育都依赖葡萄糖代谢提供能量[23]。当葡萄糖进行糖酵解时,YAP/TAZ处于活跃状态;相反,当葡萄糖代谢过程被阻断或者减弱时,YAP/TAZ转录活性降低。在糖酵解过程中,磷酸果糖激酶1 (Phosphofructokinase 1, PFK1)与TEAD结合,促进TEAD与YAP1/TAZ反应。在高葡萄糖的环境下,YAP上的糖基化修饰阻断YAP与LATS1的相互作用,从而阻断磷酸化过程,激活转录活性、调节亚细胞定位,从而调节细胞增殖生长[24]

能量代谢失调是女性不孕的主要原因。脂质是线粒体能量产生的主要来源,胆固醇是类固醇合成的关键前体。细胞脂质稳态对女性生育至关重要。研究发现,过量的胆固醇和脂肪酸会对卵母细胞的发育产生负面影响[25]。甲羟戊酸代谢是生成胆固醇和类固醇激素的关键生理代谢过程。研究显示,甲羟戊酸通过抑制磷酸化激活YAP/TAZ,并且不受LATS1/2激酶对YAP/TAZ进行调节。固醇调节元件结合蛋白(sterol regulatory element binding protein, SREBP)可激活YAP/TAZ,且SREBP活性通过突变体P53影响YAP/TAZ活性[26]

谷氨酰胺是调节细胞生长和代谢的异常重要的氨基酸。在卵巢以外的器官研究中发现,激活的、核定位的YAP1促进关键代谢酶的转录。例如,YAP1刺激谷氨酰胺合成酶的表达,从而增强核苷酸从头生物合成,满足细胞增殖所需的合成代谢[27]。在谷氨酸转化为α-酮戊二酸的过程中,YAP/TAZ诱导谷氨酰胺转移酶(glutamic-oxaloacetic transaminase 1, GOT1)和磷酸丝氨酸转移酶(phosphoserine aminotransferase 1, PSAT1)的表达,从而促进细胞生长发育[28]

3. Hippo信号通路与早发性卵巢功能不全

Hippo信号通路受多种生化、物理和结构信号的影响,包括机械信号、细胞极性、细胞间黏附、激素、生物活性化学物质和细胞应激等[29]

颗粒细胞的增殖和对凋亡的抵抗,对于滤泡发育至关重要。颗粒细胞的增殖减少或停止通常会导致排卵异常。功能失调的颗粒细胞会扰乱卵泡发育环境,导致滤泡闭锁加剧,卵巢储备功能受损和严重的卵巢功能障碍。有研究显示,外源性的成纤维细胞生长因子2 (fibroblast growth factor 2, FGF2)通过旁分泌作用对POF有影响,其增强了被顺铂损伤的卵巢颗粒细胞存活率。主要原因是FGF2会增加YAP核表达并抑制Hippo信号传导;但是当使用FGF2-FGFR信号传导阻滞剂AZD4547时,YAP蛋白表达显著降低,颗粒细胞表现出细胞凋亡趋势。由此说明,YAP激活在FGF2诱导的颗粒细胞增殖中发挥作用。用FGF2处理的POF小鼠表现出卵巢功能的显著恢复,包括更高的雌二醇水平、更好的卵泡发育以及功能性卵泡和颗粒细胞数量的增加。来自FGF2处理的小鼠的组织样本也显示颗粒细胞中YAP表达增强。这些结果表明,FGF2处理抑制Hippo通路并上调活性YAP表达,从而增加顺铂损伤颗粒细胞的抗凋亡能力并保留POF小鼠模型的卵巢功能。功能研究显示,microRNAs (miRNA)可通过调节Hippo信号通路中的靶基因,在类固醇生成、颗粒细胞增殖/凋亡、自噬和滤泡发育中起作用,从而在POI的治疗中发挥重要潜力。在化疗诱导的POI动物模型中显示,miR-15a通过抑制Hippo-YAP/TAZ通路,在促进颗粒细胞细胞毒性、衰老和凋亡中起关键作用。miR-484直接靶向Hippo信号通路的YAP1,诱导线粒体功能障碍,从而降低颗粒细胞的活力并促进细胞凋亡,导致DOR的发病[31]。由此可见,Hippo信号通路通过调节卵巢颗粒细胞的增殖/凋亡,在POI的发生以及治疗中发挥重要作用。

原始卵泡是一种休眠类型的卵泡,由停滞在前期I并被单层鳞状颗粒细胞包围的卵母细胞组成;这些卵泡位于卵泡生成的促性腺激素非依赖性部分。POI的治疗显示,Hippo信号通路通过激活原始卵泡,使患者的生育力得到提升。众所周知,除了细胞内信号通路外,颗粒细胞和卵母细胞之间的多种旁分泌因子也参与卵泡生长。已报道的原始卵泡抑制物包括以下[33]:Yes相关蛋白(YAP)/Hippo信号干扰因子[34]、抗苗勒管激素、mTORC1/2抑制剂[36]-[38]和叉头盒O3 (FOXO3) [39]。治疗特发性POI年轻女性的临床研究表明,切除卵巢或卵巢皮层后进行体外激活(IVA)并重新插入组织已导致大约10例活产[40]。体外激活是在改变2个通路的基础上开发的:参与肿瘤抑制的Hippo信号通路[41] 和参与癌细胞增殖的PTEN/磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/FOXO3通路。对于Hippo通路,卵巢组织碎片化的IVA被认为会改变细胞间接触和细胞外基质(ECM)刚度。体外激活通过改变Rho GTP酶活性和F-肌动蛋白聚合来影响机械转导,从而破坏Hippo通路基因表达。这导致细胞质中细胞质刺激性转录共激活因子YAP和具有PDZ结合(突触后致密蛋白95、果蝇大肿瘤抑制因子和闭塞带1)基序(TAZ)的转录共激活因子水平增加;YAP因子移动到细胞核;与Tea结构域家族(TEAD)转录因子(TEAD1-4)结合,TEAD1-4是一个高度保守的脱氧核糖核酸(DNA)结合结构域;同时增加生长因子的转录,包括CCN (CYR61、结缔组织生长因子[CTGF]和肾母细胞瘤过表达蛋白)和含有凋亡重复序列杆状病毒抑制剂(BIRC)。卵巢碎片化后磷酸化YAP/YAP1比率降低18.8%以及BIRC和CCN过表达证实了Hippo通路抑制[43]。机械转导、活性YAP/TAZ数量和TEAD表达的这些变化导致细胞增殖[44]和卵泡生成[45]。Hippo通路信号转导的破坏对器官大小控制很重要,并促进细胞间接触生长和抑制,已被证明可促进促性腺激素非依赖性卵泡激活。细胞密度和基质刚度通过机械转导在颗粒细胞生长中起重要作用,这部分是由A激酶锚定蛋白13 (AKAP13)和F-肌动蛋白聚合的功能介导的。细胞密度、基质刚度和AKAP13的变化能够改变Rho A、F-肌动蛋白聚合、Hippo通路基因、YAP/TAZ DNA结合和TEAD-荧光素酶报告基因表达。机械转导实验与De Roo等人[46]的一项研究一致,该研究证明Hippo通路由于对人类卵巢组织的机械作用而被切割成条状并培养6天,从而驱动原始卵泡激活。他们注意到颗粒细胞中磷酸化YAP的消失,随着培养天数的增加,核YAP的增加以及CTGF表达的上调。此外,较硬的底物孔中较高的TEAD表达与之前的数据一致,该数据表明,增加胶原基质刚度可以驱动YAP的核积累,并促进癌症相关成纤维细胞中YAP和TAZ转录调节分子的活性[47]

此外,外周血单核细胞[48]、脂肪组织[49]、脐带[50] [51]、和羊水[52],已发现MSC将生长因子(包括血管内皮生长因子、胰岛素样生长因子-1和肝细胞生长因子)分泌到培养基中[53],这些可以通过改善微环境来增强卵泡发生[54]。综上,这些发现为POI患者可能的治疗方向提供了广泛的思路。

4. 总结

Hippo信号通路在卵巢的发生、发育中起着非常重要的作用,其通路中的信号分子对卵巢的影响都是复杂且多方面的。POI是作为危害女性生理及心理的疾病之一,对患者本身、家庭及社会都造成了巨大的压力。Hippo信号通路治疗POI的机制,涉及原始卵泡激活、颗粒细胞增殖/凋亡以及卵巢微环境等多方面的因素。近年来,Hippo信号通路在POI发生发展中的作用得到广泛研究及认可,对于不同的患者,信号通路在其中的调控也不尽相同。因此,不仅需要深入探究信号通路的调控方式,更需要深入理解POI疾病本身。对信号通路的深入研究,以期为POI的治疗打开新思路。

NOTES

*通讯作者。

参考文献

[1] Coulam, C.B., Adamson, S.C. and Annegers, J.F. (1986) Incidence of Premature Ovarian Failure. Obstetrics & Gynecology, 67, 604-606.
[2] Li, M., Zhu, Y., Wei, J., Chen, L., Chen, S. and Lai, D. (2022) The Global Prevalence of Premature Ovarian Insufficiency: A Systematic Review and Meta-analysis. Climacteric, 26, 95-102.
https://doi.org/10.1080/13697137.2022.2153033
[3] Webber, L., Davies, M., et al. (2016) ESHRE Guideline: Management of Women with Premature Ovarian Insufficiency. Human Reproduction, 31, 926-937.
[4] 中华医学会妇产科学分会绝经学组. 早发性卵巢功能不全的临床诊疗专家共识(2023版) [J]. 中华妇产科杂志, 2023, 58(10): 721-728.
[5] Yang, Q., Mumusoglu, S., Qin, Y., Sun, Y. and Hsueh, A.J. (2021) A Kaleidoscopic View of Ovarian Genes Associated with Premature Ovarian Insufficiency and Senescence. The FASEB Journal, 35, e21753.
https://doi.org/10.1096/fj.202100756r
[6] Vujovic, S. (2009) Aetiology of Premature Ovarian Failure. Menopause International, 15, 72-75.
https://doi.org/10.1258/mi.2009.009020
[7] Hsueh, A.J.W., Kawamura, K., Cheng, Y. and Fauser, B.C.J.M. (2015) Intraovarian Control of Early Folliculogenesis. Endocrine Reviews, 36, 1-24.
https://doi.org/10.1210/er.2014-1020
[8] 胡立桥, 周兆才, 田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674.
[9] Clark, K.L., George, J.W., Przygrodzka, E., Plewes, M.R., Hua, G., Wang, C., et al. (2022) Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocrine Reviews, 43, 1074-1096.
https://doi.org/10.1210/endrev/bnac013
[10] Yu, F., Zhao, B. and Guan, K. (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 163, 811-828.
https://doi.org/10.1016/j.cell.2015.10.044
[11] Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Development, 21, 2747-2761.
https://doi.org/10.1101/gad.1602907
[12] Lv, X., He, C., Huang, C., Wang, H., Hua, G., Wang, Z., et al. (2019) Timely Expression and Activation of YAP1 in Granulosa Cells Is Essential for Ovarian Follicle Development. The FASEB Journal, 33, 10049-10064.
https://doi.org/10.1096/fj.201900179rr
[13] Lyu, Z., Qin, N., Tyasi, T.L., Zhu, H., Liu, D., Yuan, S., et al. (2016) The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary. PLOS ONE, 11, e0160896.
https://doi.org/10.1371/journal.pone.0160896
[14] Li, J., Luo, W., Huang, T. and Gong, Y. (2019) Growth Differentiation Factor 9 Promotes Follicle-Stimulating Hormone-Induced Progesterone Production in Chicken Follicular Granulosa Cells. General and Comparative Endocrinology, 276, 69-76.
https://doi.org/10.1016/j.ygcen.2019.03.005
[15] Sun, T., Pepling, M.E. and Diaz, F.J. (2015) Lats1 Deletion Causes Increased Germ Cell Apoptosis and Follicular Cysts in Mouse Ovaries. Biology of Reproduction, 93, Article No. 22.
https://doi.org/10.1095/biolreprod.114.118604
[16] St John, M.A.R., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., et al. (1999) Mice Deficient of Lats1 Develop Soft-Tissue Sarcomas, Ovarian Tumours and Pituitary Dysfunction. Nature Genetics, 21, 182-186.
https://doi.org/10.1038/5965
[17] Tsoi, M., Morin, M., Rico, C., Johnson, R.L., Paquet, M., Gévry, N., et al. (2019) Lats1 and Lats2 Are Required for Ovarian Granulosa Cell Fate Maintenance. The FASEB Journal, 33, 10819-10832.
https://doi.org/10.1096/fj.201900609r
[18] Sun, X., Niu, X., Qin, N., Shan, X., Zhao, J., Ma, C., et al. (2021) Novel Insights into the Regulation of LATS2 Kinase in Prehierarchical Follicle Development via the Hippo Pathway in Hen Ovary. Poultry Science, 100, Article ID: 101454.
https://doi.org/10.1016/j.psj.2021.101454
[19] Yu, H., Yang, Z., Xu, M., Huang, J., Yue, Z. and Guo, B. (2022) Yap Is Essential for Uterine Decidualization through Rrm2/gsh/ros Pathway in Response to Bmp2. International Journal of Biological Sciences, 18, 2261-2276.
https://doi.org/10.7150/ijbs.67756
[20] Lv, X., He, C., Huang, C., Hua, G., Chen, X., Timm, B.K., et al. (2020) Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Science Bulletin, 65, 1281-1296.
https://doi.org/10.1016/j.scib.2020.03.040
[21] Hu, L., Su, T., Luo, R., Zheng, Y., Huang, J., Zhong, Z., et al. (2018) Hippo Pathway Functions as a Downstream Effector of AKT Signaling to Regulate the Activation of Primordial Follicles in Mice. Journal of Cellular Physiology, 234, 1578-1587.
https://doi.org/10.1002/jcp.27024
[22] Ye, H., Li, X., Zheng, T., Hu, C., Pan, Z., Huang, J., et al. (2017) The Hippo Signaling Pathway Regulates Ovarian Function via the Proliferation of Ovarian Germline Stem Cells. Cellular Physiology and Biochemistry, 41, 1051-1062.
https://doi.org/10.1159/000464113
[23] Dupont, J. and Scaramuzzi, R.J. (2016) Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochemical Journal, 473, 1483-1501.
https://doi.org/10.1042/bcj20160124
[24] Enzo, E., Santinon, G., Pocaterra, A., Aragona, M., Bresolin, S., Forcato, M., et al. (2015) Aerobic Glycolysis Tunes YAP/TAZ Transcriptional Activity. The EMBO Journal, 34, 1349-1370.
https://doi.org/10.15252/embj.201490379
[25] Leroy, J.L.M.R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005) Non-Esterified Fatty Acids in Follicular Fluid of Dairy Cows and Their Effect on Developmental Capacity of Bovine Oocytes in Vitro. Reproduction, 130, 485-495.
https://doi.org/10.1530/rep.1.00735
[26] Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., et al. (2014) Metabolic Control of YAP and TAZ by the Mevalonate Pathway. Nature Cell Biology, 16, 357-366.
https://doi.org/10.1038/ncb2936
[27] Cox, A.G., Hwang, K.L., Brown, K.K., Evason, K.J., Beltz, S., Tsomides, A., et al. (2016) Yap Reprograms Glutamine Metabolism to Increase Nucleotide Biosynthesis and Enable Liver Growth. Nature Cell Biology, 18, 886-896.
https://doi.org/10.1038/ncb3389
[28] Yang, C., Stampouloglou, E., Kingston, N.M., Zhang, L., Monti, S. and Varelas, X. (2018) Glutamine‐Utilizing Transaminases Are a Metabolic Vulnerability of TAZ/YAP‐Activated Cancer Cells. EMBO reports, 19, e43577.
https://doi.org/10.15252/embr.201643577
[29] Zhang, X., Zhao, H., Li, Y., Xia, D., Yang, L., Ma, Y., et al. (2018) The Role of YAP/TAZ Activity in Cancer Metabolic Reprogramming. Molecular Cancer, 17, Article No. 134.
https://doi.org/10.1186/s12943-018-0882-1
[30] Cheng, F., Wang, J., Wang, R., Pan, R., Cui, Z., Wang, L., et al. (2024) FGF2 Promotes the Proliferation of Injured Granulosa Cells in Premature Ovarian Failure via Hippo-Yap Signaling Pathway. Molecular and Cellular Endocrinology, 589, Article ID: 112248.
https://doi.org/10.1016/j.mce.2024.112248
[31] Luo, J. and Sun, Z. (2023) MicroRNAs in POI, DOR and Por. Archives of Gynecology and Obstetrics, 308, 1419-1430.
https://doi.org/10.1007/s00404-023-06922-z
[32] Maher, J.Y., Islam, M.S., Yin, O., Brennan, J., Gough, E., Driggers, P., et al. (2022) The Role of Hippo Pathway Signaling and A-Kinase Anchoring Protein 13 in Primordial Follicle Activation and Inhibition. F&S Science, 3, 118-129.
https://doi.org/10.1016/j.xfss.2022.03.002
[33] Ernst, E.H., Grøndahl, M.L., Grund, S., Hardy, K., Heuck, A., Sunde, L., et al. (2017) Dormancy and Activation of Human Oocytes from Primordial and Primary Follicles: Molecular Clues to Oocyte Regulation. Human Reproduction, 32, 1684-1700.
https://doi.org/10.1093/humrep/dex238
[34] Kawamura, K., Cheng, Y., Suzuki, N., Deguchi, M., Sato, Y., Takae, S., et al. (2013) Hippo Signaling Disruption and AKT Stimulation of Ovarian Follicles for Infertility Treatment. Proceedings of the National Academy of Sciences of the United States of America, 110, 17474-17479.
https://doi.org/10.1073/pnas.1312830110
[35] Pankhurst, M.W. (2017) A Putative Role for Anti-Müllerian Hormone (AMH) in Optimising Ovarian Reserve Expenditure. Journal of Endocrinology, 233, R1-R13.
https://doi.org/10.1530/joe-16-0522
[36] Liu, W., Zhang, J., Wang, L., Liang, S., Xu, B., Ying, X., et al. (2021) The Protective Effects of Rapamycin Pretreatment on Ovarian Damage during Ovarian Tissue Cryopreservation and Transplantation. Biochemical and Biophysical Research Communications, 534, 780-786.
https://doi.org/10.1016/j.bbrc.2020.10.110
[37] Goldman, K.N., Chenette, D., Arju, R., Duncan, F.E., Keefe, D.L., Grifo, J.A., et al. (2017) mTORC1/2 Inhibition Preserves Ovarian Function and Fertility during Genotoxic Chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 114, 3186-3191.
https://doi.org/10.1073/pnas.1617233114
[38] Zhang, J.M., Lu, X.L. and Wang, H.X. (2020) Inhibition of mTORC1 Signaling Pathway Is a Valid Therapeutic Strategy in Transplantation of Cryopreserved Mouse Ovarian Tissue. CryoLetters, 41, 38-43.
[39] Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W. and DePinho, R.A. (2003) Suppression of Ovarian Follicle Activation in Mice by the Transcription Factor Foxo3a. Science, 301, 215-218.
https://doi.org/10.1126/science.1086336
[40] Lee, H.N. and Chang, E.M. (2019) Primordial Follicle Activation as New Treatment for Primary Ovarian Insufficiency. Clinical and Experimental Reproductive Medicine, 46, 43-49.
https://doi.org/10.5653/cerm.2019.46.2.43
[41] Halder, G., Dupont, S. and Piccolo, S. (2012) Transduction of Mechanical and Cytoskeletal Cues by YAP and Taz. Nature Reviews Molecular Cell Biology, 13, 591-600.
https://doi.org/10.1038/nrm3416
[42] Gumbiner, B.M. and Kim, N. (2014) The Hippo-Yap Signaling Pathway and Contact Inhibition of Growth. Journal of Cell Science, 127, 709-717.
https://doi.org/10.1242/jcs.140103
[43] Díaz-García, C., Herraiz, S., Pamplona, L., Subirá, J., Soriano, M.J., Simon, C., et al. (2022) Follicular Activation in Women Previously Diagnosed with Poor Ovarian Response: A Randomized, Controlled Trial. Fertility and Sterility, 117, 747-755.
https://doi.org/10.1016/j.fertnstert.2021.12.034
[44] Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011) Role of YAP/TAZ in Mechanotransduction. Nature, 474, 179-183.
https://doi.org/10.1038/nature10137
[45] Shah, J.S., Sabouni, R., Cayton Vaught, K.C., Owen, C.M., Albertini, D.F. and Segars, J.H. (2018) Biomechanics and Mechanical Signaling in the Ovary: A Systematic Review. Journal of Assisted Reproduction and Genetics, 35, 1135-1148.
https://doi.org/10.1007/s10815-018-1180-y
[46] De Roo, C., Lierman, S., Tilleman, K. and De Sutter, P. (2020) In-Vitro Fragmentation of Ovarian Tissue Activates Primordial Follicles through the Hippo Pathway. Human Reproduction Open, 2020, hoaa048.
https://doi.org/10.1093/hropen/hoaa048
[47] Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., et al. (2013) Mechanotransduction and Yap-Dependent Matrix Remodelling Is Required for the Generation and Maintenance of Cancer-Associated Fibroblasts. Nature Cell Biology, 15, 637-646.
https://doi.org/10.1038/ncb2756
[48] Huang, Q., Liu, B., Jiang, R., Liao, S., Wei, Z., Bi, Y., et al. (2019) G-CSF-Mobilized Peripheral Blood Mononuclear Cells Combined with Platelet-Rich Plasma Accelerate Restoration of Ovarian Function in Cyclophosphamide-Induced POI Rats. Biology of Reproduction, 101, 91-101.
https://doi.org/10.1093/biolre/ioz077
[49] Vural, B., Duruksu, G., Vural, F., Gorguc, M. and Karaoz, E. (2019) Effects of VEGF + Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Reviews and Reports, 15, 558-573.
https://doi.org/10.1007/s12015-019-09892-5
[50] Song, D., Zhong, Y., Qian, C., Zou, Q., Ou, J., Shi, Y., et al. (2016) Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model. BioMed Research International, 2016, Article ID: 2517514.
https://doi.org/10.1155/2016/2517514
[51] Mohamed, S.A., Shalaby, S., Brakta, S., Elam, L., Elsharoud, A. and Al-Hendy, A. (2019) Umbilical Cord Blood Mesenchymal Stem Cells as an Infertility Treatment for Chemotherapy Induced Premature Ovarian Insufficiency. Biomedicines, 7, Article 7.
https://doi.org/10.3390/biomedicines7010007
[52] Ling, L., Feng, X., Wei, T., Wang, Y., Wang, Y., Wang, Z., et al. (2019) Human Amnion-Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation Improves Ovarian Function in Rats with Premature Ovarian Insufficiency (POI) at Least Partly through a Paracrine Mechanism. Stem Cell Research & Therapy, 10, Article No. 46.
https://doi.org/10.1186/s13287-019-1136-x
[53] Elfayomy, A.K., Almasry, S.M., El-Tarhouny, S.A. and Eldomiaty, M.A. (2016) Human Umbilical Cord Blood-Mesenchymal Stem Cells Transplantation Renovates the Ovarian Surface Epithelium in a Rat Model of Premature Ovarian Failure: Possible Direct and Indirect Effects. Tissue and Cell, 48, 370-382.
https://doi.org/10.1016/j.tice.2016.05.001
[54] Fu, X., He, Y., Xie, C. and Liu, W. (2008) Bone Marrow Mesenchymal Stem Cell Transplantation Improves Ovarian Function and Structure in Rats with Chemotherapy-Induced Ovarian Damage. Cytotherapy, 10, 353-363.
https://doi.org/10.1080/14653240802035926