[1]
|
Ilic, M. and Ilic, I. (2022) Epidemiology of Stomach Cancer. World Journal of Gastroenterology, 28, 1187-1203. https://doi.org/10.3748/wjg.v28.i12.1187
|
[2]
|
Zaanan, A. (2022) Immunothérapie dans le traitement du cancer gastrique métastatique. Bulletin du Cancer, 109, 1066-1072. https://doi.org/10.1016/j.bulcan.2022.07.002
|
[3]
|
Nie, S., Yang, G. and Lu, H. (2020) Current Molecular Targeted Agents for Advanced Gastric Cancer. OncoTargets and Therapy, 13, 4075-4088. https://doi.org/10.2147/ott.s246412
|
[4]
|
Kubota, Y., Kawazoe, A., Mishima, S., Nakamura, Y., Kotani, D., Kuboki, Y., et al. (2023) Comprehensive Clinical and Molecular Characterization of Claudin 18.2 Expression in Advanced Gastric or Gastroesophageal Junction Cancer. ESMO Open, 8, Article 100762. https://doi.org/10.1016/j.esmoop.2022.100762
|
[5]
|
Breeman, W.A.P., Sze Chan, H., M.S. de Zanger, R., Konijnenberg, M.K. and de Blois, E. (2015) Overview of Development and Formulation of 177Lu-DOTA-TATE for PRRT. Current Radiopharmaceuticals, 9, 8-18. https://doi.org/10.2174/1874471008666150313111131
|
[6]
|
Seregni, E., Maccauro, M., Chiesa, C., Mariani, L., Pascali, C., Mazzaferro, V., et al. (2014) Treatment with Tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of Neuroendocrine Tumours Refractory to Conventional Therapy. European Journal of Nuclear Medicine and Molecular Imaging, 41, 223-230. https://doi.org/10.1007/s00259-013-2578-5
|
[7]
|
Sampaio, I.L., Luíz, H.V., Violante, L.S., Santos, A.P., Antunes, L., Torres, I., et al. (2020) Errata ao artigo “tratamento de tumores neuroendócrinos gastroenteropancreáticos com 177Lu-DOTA-TATE: Experiência do instituto português de Oncologia do Porto”, por Inês Lucena Sampaio, Henrique Vara Luiz, Liliana Sobral Violante, Ana Paula Santos, Luís Antunes, Isabel Torres, Cristina Sanches, Isabel Azevedo, Hugo Duarte publicado em acta med port 2016 Nov;29(11):726-733. Acta Médica Portuguesa, 33, 81-82. https://doi.org/10.20344/amp.12994
|
[8]
|
Limouris, G.S., Karfis, I., Chatzioannou, A., et al. (2012) Super-Selective Hepatic Arterial Infusions as Established Technique (‘ARE-TAIEION’ Protocol) of [177Lu] DOTA-TATE in Inoperable Neuroendocrine Liver Metastases of Gastro-Entero-Pancreatic (GEP) Tumors. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 56, 551-558.
|
[9]
|
Schlingmann, B., Molina, S.A. and Koval, M. (2015) Claudins: Gatekeepers of Lung Epithelial Function. Seminars in Cell & Developmental Biology, 42, 47-57. https://doi.org/10.1016/j.semcdb.2015.04.009
|
[10]
|
Niimi, T., Nagashima, K., Ward, J.M., Minoo, P., Zimonjic, D.B., Popescu, N.C., et al. (2001) Claudin-18, a Novel Downstream Target Gene for the T/EBP/NKX2.1 Homeodomain Transcription Factor, Encodes Lung-and Stomach-Specific Isoforms through Alternative Splicing. Molecular and Cellular Biology, 21, 7380-7390. https://doi.org/10.1128/mcb.21.21.7380-7390.2001
|
[11]
|
Baek, J.H., Park, D.J., Kim, G.Y., Cheon, J., Kang, B.W., Cha, H.J., et al. (2019) Clinical Implications of Claudin18.2 Expression in Patients with Gastric Cancer. Anticancer Research, 39, 6973-6979. https://doi.org/10.21873/anticanres.13919
|
[12]
|
Kyuno, D., Takasawa, A., Takasawa, K., Ono, Y., Aoyama, T., Magara, K., et al. (2021) Claudin-18.2 as a Therapeutic Target in Cancers: Cumulative Findings from Basic Research and Clinical Trials. Tissue Barriers, 10, Article ID: 1967080. https://doi.org/10.1080/21688370.2021.1967080
|
[13]
|
Cao, W., Xing, H., Li, Y., Tian, W., Song, Y., Jiang, Z., et al. (2022) Claudin18.2 Is a Novel Molecular Biomarker for Tumor-Targeted Immunotherapy. Biomarker Research, 10, Article No. 38. https://doi.org/10.1186/s40364-022-00385-1
|
[14]
|
Sahin, U., Koslowski, M., Dhaene, K., Usener, D., Brandenburg, G., Seitz, G., et al. (2008) Claudin-18 Splice Variant 2 Is a Pan-Cancer Target Suitable for Therapeutic Antibody Development. Clinical Cancer Research, 14, 7624-7634. https://doi.org/10.1158/1078-0432.ccr-08-1547
|
[15]
|
Dottermusch, M., Krüger, S., Behrens, H., Halske, C. and Röcken, C. (2019) Expression of the Potential Therapeutic Target Claudin-18.2 Is Frequently Decreased in Gastric Cancer: Results from a Large Caucasian Cohort Study. Virchows Archiv, 475, 563-571. https://doi.org/10.1007/s00428-019-02624-7
|
[16]
|
Rohde, C., Yamaguchi, R., Mukhina, S., Sahin, U., Itoh, K. and Türeci, Ö. (2019) Comparison of Claudin18.2 Expression in Primary Tumors and Lymph Node Metastases in Japanese Patients with Gastric Adenocarcinoma. Japanese Journal of Clinical Oncology, 49, 870-876. https://doi.org/10.1093/jjco/hyz068
|
[17]
|
Türeci, O., Sahin, U., Schulze-Bergkamen, H., Zvirbule, Z., Lordick, F., Koeberle, D., et al. (2019) A Multicentre, Phase Iia Study of Zolbetuximab as a Single Agent in Patients with Recurrent or Refractory Advanced Adenocarcinoma of the Stomach or Lower Oesophagus: The MONO Study. Annals of Oncology, 30, 1487-1495. https://doi.org/10.1093/annonc/mdz199
|
[18]
|
Akizuki, R., Eguchi, H., Endo, S., Matsunaga, T. and Ikari, A. (2019) ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biological and Pharmaceutical Bulletin, 42, 247-254. https://doi.org/10.1248/bpb.b18-00670
|
[19]
|
Zhang, J., Dong, R. and Shen, L. (2020) Evaluation and Reflection on Claudin 18.2 Targeting Therapy in Advanced Gastric Cancer. Chinese Journal of Cancer Research, 32, 263-270. https://doi.org/10.21147/j.issn.1000-9604.2020.02.13
|
[20]
|
Lordick, F., Thuss-Patience, P., Bitzer, M., Maurus, D., Sahin, U. and Türeci, Ö. (2023) Immunological Effects and Activity of Multiple Doses of Zolbetuximab in Combination with Zoledronic Acid and Interleukin-2 in a Phase 1 Study in Patients with Advanced Gastric and Gastroesophageal Junction Cancer. Journal of Cancer Research and Clinical Oncology, 149, 5937-5950. https://doi.org/10.1007/s00432-022-04459-3
|
[21]
|
Sahin, U., Türeci, Ö., Manikhas, G., Lordick, F., Rusyn, A., Vynnychenko, I., et al. (2021) FAST: A Randomised Phase II Study of Zolbetuximab (IMAB362) Plus EOX versus EOX Alone for First-Line Treatment of Advanced Cldn18.2-Positive Gastric and Gastro-Oesophageal Adenocarcinoma. Annals of Oncology, 32, 609-619. https://doi.org/10.1016/j.annonc.2021.02.005
|
[22]
|
Couzin-Frankel, J. (2013) Breakthrough of the Year 2013. Cancer Immunotherapy. Science, 342, 1432-1433. https://doi.org/10.1126/science.342.6165.1432
|
[23]
|
Baker, D.J., Arany, Z., Baur, J.A., Epstein, J.A. and June, C.H. (2023) CAR T Therapy Beyond Cancer: The Evolution of a Living Drug. Nature, 619, 707-715. https://doi.org/10.1038/s41586-023-06243-w
|
[24]
|
Jiang, H., Shi, Z., Wang, P., Wang, C., Yang, L., Du, G., et al. (2018) Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. JNCI: Journal of the National Cancer Institute, 111, 409-418. https://doi.org/10.1093/jnci/djy134
|
[25]
|
Xu, R., Ruan, D., Zhang, D., Liu, F., Luo, S., Zhuang, Z., et al. (2023) A Phase 1 Trial of Claudin 18.2-Specific Antibody-Drug Conjugate CMG901 in Patients with Advanced Gastric/Gastroesophageal Junction Cancer. Journal of Clinical Oncology, 41, 434420-434420. https://doi.org/10.1200/jco.2023.41.36_suppl.434420
|
[26]
|
Wang, Y., Gong, J., Lin, R., Zhao, S., Wang, J., Wang, Q., et al. (2023) First-in-Human Dose Escalation and Expansion Study of SYSA1801, an Antibody-Drug Conjugate Targeting Claudin 18.2 in Patients with Resistant/Refractory Solid Tumors. Journal of Clinical Oncology, 41, 3016-3016. https://doi.org/10.1200/jco.2023.41.16_suppl.3016
|
[27]
|
Zhu, G., Foletti, D., Liu, X., Ding, S., Melton Witt, J., Hasa-Moreno, A., et al. (2019) Targeting CLDN18.2 by CD3 Bispecific and ADC Modalities for the Treatments of Gastric and Pancreatic Cancer. Scientific Reports, 9, Article No. 8420. https://doi.org/10.1038/s41598-019-44874-0
|
[28]
|
Wang, S., Qi, C., Ding, J., Li, D., Zhang, M., Ji, C., et al. (2023) First-in-Human CLDN18.2 Functional Diagnostic Pet Imaging of Digestive System Neoplasms Enables Whole-Body Target Mapping and Lesion Detection. European Journal of Nuclear Medicine and Molecular Imaging, 50, 2802-2817. https://doi.org/10.1007/s00259-023-06234-z
|
[29]
|
Hu, G., Zhu, W., Liu, Y., Wang, Y., Zhang, Z., Zhu, S., et al. (2022) Development and Comparison of Three 89zr-Labeled Anti-CLDN18.2 Antibodies to Noninvasively Evaluate CLDN18.2 Expression in Gastric Cancer: A Preclinical Study. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2634-2644. https://doi.org/10.1007/s00259-022-05739-3
|
[30]
|
Chen, Y., Hou, X., Li, D., Ding, J., Liu, J., Wang, Z., et al. (2023) Development of a CLDN18.2-Targeting Immuno-Pet Probe for Non-Invasive Imaging in Gastrointestinal Tumors. Journal of Pharmaceutical Analysis, 13, 367-375. https://doi.org/10.1016/j.jpha.2023.02.011
|
[31]
|
Qi, C., Guo, R., Chen, Y., Li, C., Liu, C., Zhang, M., et al. (2024) 68Ga-NC-BCH Whole-Body PET Imaging Rapidly Targets Claudin18.2 in Lesions in Gastrointestinal Cancer Patients. Journal of Nuclear Medicine, 65, 856-863. https://doi.org/10.2967/jnumed.123.267110
|
[32]
|
Zhong, W., Lu, Y., Ma, Z., He, Y., Ding, Y., Yao, G., et al. (2022) Development of a Humanized VHH Based Recombinant Antibody Targeting Claudin 18.2 Positive Cancers. Frontiers in Immunology, 13, Article 885424. https://doi.org/10.3389/fimmu.2022.885424
|