硼掺杂石墨相氮化碳的制备及其光催化降解水中有机污染物性能研究
Synthesis of Boron-Doped Graphitic Carbon Nitride and Its Photocatalytic Degradation of Organic Pollutants in Wastewater
摘要: 石墨相氮化碳(g-C3N4)作为一种极具潜力的非金属光催化剂,因其独特的电子结构和环境友好特性受到广泛关注。然而,纯g-C3N4存在光生载流子复合率高、比表面积有限等问题,限制了其实际应用。本研究以三聚氰胺为前驱体,通过热聚合法制备纯g-C3N4,并采用硼酸原位掺杂策略合成了一系列硼改性石墨相氮化碳催化剂(B-C3N4)。通过表征发现,硼掺杂保留了g-C3N4的基本骨架,但显著破坏了其层状堆叠结构,增强了光吸收和电荷分离效率。实验结果表明,B-C3N4对罗丹明B(RhB)、甲基橙(MO)和双酚A(BPA)等污染物的降解效率明显优于g-C3N4。此外,循环实验和自然光下降解测试表明B-C3N4具有良好的稳定性和实际应用潜力。该研究为开发高效、稳定的非金属光催化剂提供了新思路,在环境污染治理领域具有重要应用价值。
Abstract: Graphite-phase carbon nitride (g-C3N4), as a promising non-metallic photocatalyst, has attracted much attention due to its unique electronic structure and environmentally friendly properties. However, pure g-C3N4 suffers from high photogenerated carrier recombination rate and limited specific surface area, which limits its practical application. In this study, pure g-C3N4 was prepared by thermal polymerisation using melamine as a precursor and a series of boron-modified graphitic phase carbon nitride catalysts (B-C3N4) were synthesised using a in situ boron doping strategy. Characterisation reveals that boron doping preserves the basic skeleton of g-C3N4 but significantly disrupts its layered stacking structure, enhancing light absorption and charge separation efficiency. The experimental results showed that the degradation efficiency of B-C3N4 for pollutants such as Rhodamine B (RhB), Methyl Orange (MO) and Bisphenol A (BPA) was significantly better than that of g-C3N4. In addition, the cycling experiments and the degradation tests under natural light showed that B-C3N4 has good stability and potential for practical applications. This study provides a new idea for the development of highly efficient and stable non-metallic photocatalysts, which has important application value in the field of environmental pollution treatment.
文章引用:李紫尧, 孙旭镯, 李波. 硼掺杂石墨相氮化碳的制备及其光催化降解水中有机污染物性能研究[J]. 物理化学进展, 2025, 14(3): 542-551. https://doi.org/10.12677/japc.2025.143051

1. 引言

含有持久性有毒污染物的水正威胁着人类健康和生态安全。利用半导体光催化剂降解含有有机成分的废水已引起全球研究的关注[1]-[3]。在各种持久性有害污染物中,有机纺织染料和双酚A广泛存在于工业废水中[4]-[6]。具有不同官能团的有机纺织染料具有相对稳定的化学结构,在特定条件下对动植物具有致突变[7]、致癌[8]和致畸作用[9]。据报道,双酚A具有高毒性、致癌性和遗传毒性损伤[10] [11],可能导致内分泌失调,干扰生殖系统,引起儿童性早熟[12] [13]。因此,迫切需要制定有效的处理策略,以深度降解废水中的各种有机污染物。

在已报道的光催化剂中,石墨相氮化碳(g-C3N4)因其合适的带隙(∼2.7 eV) [14]π-共轭电子系统,高效的光响应和低成本而被认为是一种潜在的非金属半导体光催化剂[15]-[17]。然而,块状g-C3N4存在堆叠层结构[18],导致比表面积低,光生载流子难以转移[19]。此外,块状g-C3N4因其结构而存在一些固有缺陷,例如光生载流子的分离效率低、活性位点有限、对可见光的吸收能力低以及载流子的复合率高[20]-[22]

非金属元素(B、F、S等)掺杂可有效调控g-C3N4的电子结构[23]-[26],通过缩小带隙、增强光吸收及抑制载流子复合显著提升其光催化活性。本工作通过系统研究B掺杂g-C3N4,通过两步法合成了B掺杂多孔氮化石墨碳(B-C3N4)。研究表明,B掺杂虽破坏g-C3N4的块状结构,但赋予其优异的染料降解性能和自然光稳定性,XRD、FTIR等表征证实掺杂可优化材料物化性质,为开发高效光催化剂提供新思路,未来研究可聚焦多元素协同掺杂及缺陷工程,进一步推动其在环境修复与能源转化中的应用。

2. 实验部分

2.1. 催化剂的合成

(1) g-C3N4的制备

将10 g三聚氰胺粉末放入坩埚中,在管式炉中,在氮气气氛下加热至550℃,加热速度为10℃/min,保持4 h后,将样品冷却至室温,得到淡黄色产物。

(2) B-C3N4的制备

称取0.8 g硼酸、4.0 g三聚氰胺,即按照质量比1比5混合,充分研磨成粉状,置于烧舟中,安装管式炉准备加热,在管式炉中通氮气气氛,加热(加热前至少通氮气30 min,以确保完全为氮气气氛),设置升温程序,升温速率为5℃/min,加热到650℃,保温4小时,自然降温,得到1:5质量比硼掺杂的B-C3N4产品。

2.2. 表征及性能测试

(1) 表征

粉末X射线衍射(PXRD)测试使用理学Ultima IV型仪器完成,采用铜靶X射线源(波长λ = 1.540 A),扫描范围为5˚至90˚,扫描速度为5˚/min。傅里叶变换红外光谱(FT-IR)由北京北芬瑞利公司的WQF-510A型红外光谱仪测定。催化剂的漫反射光谱(DRS)通过安捷伦Cary 300型光谱仪获取,光致发光(PL)光谱则使用日立F-4700型荧光光谱仪进行检测。所有电化学和光电化学实验均在晨华CHI-660E电化学工作站上完成。BET比表面积数据通过美国微流体技术公司生产的AutoChem II 2920型自动化学吸附分析仪采集。

(2) 光催化实验

在可见光条件下研究了光催化性能。实验采用配备400 nm光学滤光片的氙灯作为光源。将罗丹明B (RhB)、甲基橙(MO)和双酚A (BPA)的母液配制成浓度为100 mg∙L−1的工作溶液,并按需稀释至各实验所需浓度,溶液浓度范围分别为5 mg∙L−1至50 mg∙L−1。通常情况下,将20 mg光催化剂分散于100 mL制备好的染料水溶液中置于光催化反应器内。光照前,混合物需在黑暗环境中搅拌30分钟以达到吸附–解吸平衡状态。启动光催化过程后,每隔15分钟从反应器中取出5 mL样品溶液进行检测。

在自然光条件下,对B-C3N4上罗丹明B的光催化降解实验步骤如下:将20 mg催化剂加入石英烧瓶中,加入50 mL浓度为20 mg∙L−1的RhB水溶液,在黑暗中搅拌1小时以接近平衡。在紫外–可见分光光度计上监测吸光度光谱前,所有收集的溶液均通过0.22 μm醋酸纤维素膜滤器过滤。污染物的降解效率通过公式(1)进行计算。为探究催化剂稳定性,我们采用B-C3N4催化剂进行了五次循环的重复实验以评估其效果。每次实验结束后,使用高速离心机分离催化剂,经水清洗后置于60℃烘箱中干燥,以便进行下一轮实验。

Degradation efficiency( % )= ( A 0 A )/ A 0 ×100 (1)

其中,A0是处理前初始时间的染料溶液吸光度,A是处理后最终时间在λmax = 550 nm处的吸光度值。

(3) 自由基猝灭实验

为检测光催化过程中的活性物质,向RBh溶液中分别加入乙二胺四乙酸二钠(EDTA-2Na)、苯醌(BQ)和叔丁醇(TBA),以捕获空穴(h+)、超氧自由基(∙O2−)和羟基自由基(∙OH)。这些自由基清除剂的浓度均为0.3 mmol/L。

(4) 光电化学测试

莫特–肖特基实验和瞬态光电流实验均在电化学工作站中进行,工作站采用传统的三电极池,其中铂丝为对电极,饱和甘汞电极(SCE)为参比电极,碳棒为工作电极,暴露面积为0.28 cm2。具体来说,将5 mg光催化剂加入1.5 mL含有0.5 mL超纯水和1.0 mL酒精的混合物中,然后超声分散30分钟,以获得均匀的分散液。最后,将5.0 μL上述均匀溶液滴在碳棒顶部并自然干燥。在测试过程中,三个电极都浸泡在0.5 M Na2SO4溶液中。电化学阻抗光谱(EIS)测量的频率范围为0.01~105 Hz。

3. 结果与讨论

Figure 1. (a) XRD spectra and (b) FTIR patterns of g-C3N4 and B-C3N4; (c) SEM images of g-C3N4; (d) SEM images of B-C3N4

1. (a) g-C3N4和B-C3N4的XRD光谱和(b) 傅立叶变换红外光谱图;(c) g-C3N4的扫描电镜图像;(d) B-C3N4的扫描电镜图像

对g-C3N4和B-C3N4晶体结构特征的XRD分析(图1(a))。生成的催化剂呈现出典型的g-C3N4结构(四方晶系),这可以通过观察(002)和(100)衍射面上的两个不同衍射峰来证明,这两个衍射面分别对应于 27.3˚和13.4˚。值得注意的是,随着B的掺杂,复合材料在27.3˚处的典型峰强度逐渐减弱。这一现象的合理解释在于:由于硼元素的掺入已经将g-C3N4石墨相的层状结构基本破坏,会限制g-C3N4堆叠结构的形成,从而增加比表面积和反应位点,同时促进更大层间距的g-C3N4结构的形成。如图1(b)所示,通过傅里叶变换红外光谱(FTIR)分析证实了g-C3N4与B-C3N4的键合特性。799 cm−1处的特征峰对应三嗪环的面外弯曲振动。在1210~1640 cm−1范围内,多个拉伸振动峰表明g-C3N4杂环结构的存在。3200 cm−1处的特征峰由N-H键振动引起。值得注意的是,当B引入破坏其块状结构时,B-C3N4的特征带与g-C3N4高度吻合,这说明B-C3N4成功保持了碳氮化物的常规石墨结构。此外,799 cm−1处的尖锐特征峰呈现弱化趋势。可能的解释是:材料表面缺陷导致原本未凝聚的氨基和羟基基团脱落或被取代。

g-C3N4与B-C3N4的微观结构如图1(c)图1(d)所示。g-C3N4由具有层状结构的大颗粒组成,呈现出典型的块体结构。B掺杂制备的B-C3N4展现出明显的致密孔隙结构,颗粒尺寸显著减小,层状堆叠被基本破坏,表面粗糙度增加,出现大量碎片化孔隙。这种独特的孔隙结构不仅有效缩短了电荷转移距离,还提供了更多反应位点,从而实现了优异的催化性能。

采用X射线光电子能谱(XPS)对B-C3N4的表面元素组成进行研究。与纯g-C3N4相比,B-C3N4的XPS光谱高度相似,化学结构完全一致。为进一步确认表面成分,我们对C1s、N1s和B1s进行了高分辨率XPS光谱分析。如图2(a)所示,B-C3N4的C1s XPS光谱包含三个峰,分别位于284.8、286.8和288.6 eV,对应于石墨碳(C-C)、羟基化表面碳原子(C-OH)以及sp2杂化的碳氮键(N-C=N)。相较于g-C3N4,C-OH峰强度略有减弱,而N-C=N峰强度则略有增强。图2(b)中的N1s光谱显示典型的七嗪重复单元特征,可划分为三个峰。结合能位于398.2、401.2和403.4 eV的峰分别对应于N-C=N/C-N=C、N-(C)3和-氨基基团。此外,在403.4 eV处出现一个微弱特征峰,属于π-π*卫星峰。与g-C3N4相比,氨基基团(-NH2)的比例有所降低。这些结果进一步证实了B-C3N4中三嗪部分的C-OH和-氨基键断裂现象,这与红外光谱数据相吻合。图2(c)中的B1s光谱位于189.5和188.7 eV的峰分别对应于B-N、B-C键,进一步证实了B-C3N4的成功制备,而g-C3N4样品中则无硼元素的信号。

Figure 2. (a) High-resolution XPS spectra of C 1 s; (b) High-resolution XPS spectra of N 1 s; (c) High-resolution XPS spectra of B 1 s for g-C3N4 and B-C3N4

2. g-C3N4和B-C3N4的(a) C 1 s的高分辨率XPS光谱;(b) N 1 s的高分辨率XPS光谱;(c) B 1 s的高分辨率XPS光谱

Figure 3. (a) Photoluminescence (PL) and (b) photocurrent response of g-C3N4 and B-C3N4; (c) DRS and (d) band gap values of g-C3N4 and B-C3N4

3. (a) g-C3N4和B-C3N4的光致发光(PL)及(b) 光电流响应;(c) g-C3N4和B-C3N4的DRS及(d) 带隙值

图3所示,通过测量和分析光致发光(PL)光谱、光电流(PC)及动态反射光谱(DRS)的紫外–可见光谱,我们深入理解了材料的光响应能力和透射特性。从PL光谱(图3(a))可见,B-C3N4的PL强度低于g-C3N4,这表明B掺杂和孔隙结构的改变提高了电子–空穴对的分离效率,从而更有利于有效载流子的生成。图3(b)展示了g-C3N4与B-C3N4的瞬态光电流响应对比,相较于g-C3N4,B-C3N4的瞬态光电流响应显著提升约2.5倍,这表明其光生电荷分离效率较高且寿命较长。

为研究制备样品的光学特性,我们对其紫外–可见区DRS光谱进行了测试。如图3(c)所示,B的引入并未改变g-C3N4的光吸收边峰,两者均位于约460 nm处。对于制备的B-C3N4复合材料而言,其光吸收能力高于纯g-C3N4,从而展现出更优异的光利用率。值得注意的是,在460 nm以上的波长范围内,并未显著提升光吸收强度。有趣的是,在500~650 nm波段,B-C3N4的光吸收能力呈现明显增强。究其原因,孔隙结构促使材料产生可见光二次吸收[27] [28],有效提升了可见光的吸收效率。通过库贝卡–蒙克定理计算得到样品的带隙能量。如图3(d)所示,g-C3N4的带隙为2.42 eV,而B-C3N4的带隙则缩小至1.81 eV,这表明B掺杂引入孔隙结构能显著改变催化剂的带隙特性。

Figure 4. (a) EIS spectra and (b) Mott-Schottky curves of g-C3N4 and B-C3N4

4. (a) g-C3N4和B-C3N4的EIS光谱和(b) 莫特–肖特基曲线

Figure 5. (a) Degradation curves and (b) kinetic values of RhB with g-C3N4 and B-C3N4; (c) degradation curves and (d) kinetic values of BPA with g-C3N4 and B-C3N4; (e) degradation curves and (f) kinetic values of MO with g-C3N4 and B-C3N4

5. (a) RhB与g-C3N4和B-C3N4的降解曲线及(b) 动力学参数;(c) BPA与g-C3N4和B-C3N4的降解曲线及(d) 动力学参数;(e) MO与g-C3N4和B-C3N4的降解曲线及(f) 动力学参数

电化学阻抗谱(EIS)实验(图4(a))进一步验证了相同结论。B-C3N4的阻抗半径较小,表明其电荷转移效率更高。PC和EIS结果进一步证实,B掺杂引入和孔隙结构是提升g-C3N4光催化性能的有效策略。如图4(b)所示,根据公式 E CB = E VB E g ,分别得到g-C3N4 (Evb =1.85 eV)、B-C3N4 (Evb =1.68 eV)。由此可见相较于块状g-C3N4,B-C3N4具有更好的光电分离特性。

为评估g-C3N4和B-C3N4在可见光下的光催化降解能力,实验选用具有不同官能团的典型污染物罗丹明B (RhB)、甲基橙(MO)和双酚A(BPA)作为测试对象。在光照实验前,先在暗处进行吸附平衡实验以确保吸附达到动态平衡。RhB的降解曲线表明,B-C3N4对RhB的吸附效果显著优于g-C3N4。纯g-C3N4在90分钟内仅去除18.7%的RhB (图5(a))。B掺杂和空隙结构改变后,B-C3N4对RhB的降解效率大幅提升至88.83%。图5(b)分别展示了g-C3N4与B-C3N4对RhB的降解曲线及拟一级动力学模拟结果。计算得出g-C3N4和B-C3N4拟一级动力学反应速率常数(K值)分别为0.0289和0.016 min−1。类似地,B-C3N4对BPA和MO的降解效率(90分钟后分别为51%和90%)也远高于g-C3N4 (90分钟后分别为10%和73%)。根据拟一级动力学曲线和参数计算,B-C3N4对BPA和MO的光催化动力学常数分别是g-C3N4的3.1倍和2.2倍。

Figure 6. (a) Cycling run of degradation curves of RhB with B-C3N4; (b) TOC removel of g-C3N4 and B-C3N4; (c) RhB degradation efficiency with different scavengers for B-C3N4 (the concentration of RhB solution was 20 mg∙L1); (d) RhB degradation efficiency for B-C3N4 under natural light source

6. (a) RhB与B-C3N4的降解循环性能曲线;(b) g-C3N4和B-C3N4的TOC去除率;(c) B-C3N4在不同捕获剂存在下的RhB降解效率(RhB溶液浓度为20 mg∙L1);(d) B-C3N4在自然光源下的RhB降解效率

光催化剂的稳定性对其实际应用至关重要。如图6(a)所示,经过5次循环实验后,B-C3N4对RhB的光催化降解效率从98.1%降至75%,表明该催化剂仍保持良好的光催化活性,说明B-C3N4在降解过程中具有优异的稳定性和催化性能。图6(b)展示了不同降解体系反应过程中总有机碳(TOC)的变化,该指标用于评估催化剂对污染物的矿化能力。在可见光照射90分钟后,g-C3N4和B-C3N4的矿化效率分别为4.5%和28.98%。与纯g-C3N4相比,改性催化剂的矿化性能得到显著提升。B-C3N4不仅提高了RhB的降解效率,同时增强了其矿化能力。这这种优异的矿化性能可能归因于以下几个因素:首先,硼掺杂优化了g-C3N4的能带结构,促进了光生载流子的有效分离;其次,B-C3N4可能产生了更多具有强氧化能力的活性氧物种(如∙OH),这些活性物种能够攻击有机物的苯环结构,实现污染物的彻底矿化;此外,硼的引入可能改变了催化剂表面的化学性质,增强了其对中间产物的吸附和进一步氧化的能力。值得注意的是,虽然B-C3N4表现出较好的矿化能力,但仍有约71%的TOC未被去除,这表明在降解过程中可能产生了某些稳定的中间产物。这些中间产物的存在可能会影响后续的降解效率,甚至可能具有比原污染物更高的毒性。

为明确反应体系中RhB降解的主要活性物种,本研究采用对苯醌(BQ)、乙二胺四乙酸二钠(EDTA-2Na)和异丙醇(IPA)分别作为超氧自由基(∙O2−)、空穴(h+)和羟基自由基(∙OH)的捕获剂。如图6(c)所示,当添加BQ时,RhB的降解效率从95%急剧下降至36%;添加EDTA-2Na后降解效率降至49%,而IPA的加入对光催化效率未产生显著影响。自由基捕获实验结果表明:在光降解过程中,超氧自由基(∙O2−)是起主导作用的活性物种,空穴(h+)为次要活性物种。

为探究催化剂的实际应用潜力,本研究在自然太阳光条件下进行了光催化降解实验。将含有50 mg B-C3N4催化剂的RhB溶液置于玻璃反应器中,于中国郑州地区早7点至晚7点进行太阳光照射实验,其余实验条件与常规光催化测试保持一致。降解曲线(图6(d))显示,经过12小时自然太阳光照射后,RhB降解效率可达56%。该结果表明,所制备的B-C3N4材料在自然光照条件下对废水中有机染料的降解具有实际应用前景。

为评估光催化剂在实际废水处理中的应用性能,本研究选取去离子水、自来水、湖水和市政污水作为反应溶剂,模拟不同水质条件下的降解效果。如图7所示,RhB在去离子水、自来水、湖水和市政污水中的降解效率分别为95.4%、78.3%、74.3%和75.6%。实际水样的降解效率显著低于去离子水体系,这主要归因于实际废水中存在的多种竞争性物质。值得注意的是,即使在复杂水质条件下,RhB的去除率仍高达75%,展现出优异的降解性能。实验结果表明,所制备的B-C3N4光催化材料在实际废水处理和资源化利用方面具有重要应用潜力。

Figure 7. The degradation effect of catalyst on simulated environmental

7. 催化剂对模拟环境的降解作用

4. 结论

综上所述,硼掺杂在g-C3N4骨架中成功引入结构缺陷,破坏了其原有的块状结构,形成独特的孔隙结构,其对罗丹明B (RhB)、钼酸盐(MO)和双酚A (BPA)的可见光催化降解性能较原始g-C3N4显著提升。研究发现,B的引入改变了g-C3N4的空隙结构,修饰了光催化剂的电子能带结构,不仅缩小了带隙,还增强了可见光照射下的电子–空穴生成效率,同时有效抑制了电子–空穴复合现象。材料中的孔隙结构增加活性位点可及性,从而提升反应速率。B-C3N4在自然光照条件下展现出优异的稳定性和高效降解性能。机理研究表明,光催化过程中主要活性物种为∙O2和h+。这种非金属掺杂的多孔B-C3N4为利用自然可见光催化降解废水有机污染物提供了新思路。

NOTES

*通讯作者。

参考文献

[1] Fatima, M., Farooq, R., Lindström, R.W. and Saeed, M. (2017) A Review on Biocatalytic Decomposition of Azo Dyes and Electrons Recovery. Journal of Molecular Liquids, 246, 275-281.
https://doi.org/10.1016/j.molliq.2017.09.063
[2] Liu, W., He, C., Zhu, B., Zhu, E., Zhang, Y., Chen, Y., et al. (2023) Progress in Wastewater Treatment via Organic Supramolecular Photocatalysts under Sunlight Irradiation. Chinese Journal of Catalysis, 53, 13-30.
https://doi.org/10.1016/s1872-2067(23)64530-9
[3] Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C. and Bergamasco, R. (2019) Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere, 222, 766-780.
https://doi.org/10.1016/j.chemosphere.2019.02.009
[4] Varjani, S., Rakholiya, P., Shindhal, T., Shah, A.V. and Ngo, H.H. (2021) Trends in Dye Industry Effluent Treatment and Recovery of Value Added Products. Journal of Water Process Engineering, 39, Article ID: 101734.
https://doi.org/10.1016/j.jwpe.2020.101734
[5] Hundessa, N.K., Hu, C., Kang, D., Chou, P., Ajebe, E.G., Lee, K., et al. (2024) Ultra-High Flux Loose Nanofiltration Membrane Based on Metal Organic Framework (CAU-10-H)/P84 Co-Polyimide for Dye/Salt Fractionation from Industrial Waste Water. Desalination, 586, Article ID: 117871.
https://doi.org/10.1016/j.desal.2024.117871
[6] Kumari, H., Ranga, R., Chahal, S., Devi, S., et al. (2023) A Review on Photocatalysis Used for Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollution, 234, Article No. 349.
https://doi.org/10.1007/s11270-023-06359-9
[7] Liu, Q., Zhou, Y., Lu, J. and Zhou, Y. (2020) Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere, 241, Article ID: 125043.
https://doi.org/10.1016/j.chemosphere.2019.125043
[8] Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z. and Wang, R. (2022) Strong Adsorption Properties and Mechanism of Action with Regard to Tetracycline Adsorption of Double-Network Polyvinyl Alcohol-Copper Alginate Gel Beads. Journal of Hazardous Materials, 422, Article ID: 126863.
https://doi.org/10.1016/j.jhazmat.2021.126863
[9] Li, X., Li, K., Wu, J., Li, B., Wang, W. and Tang, J. (2024) Facile Preparation of Sodium Alginate Gel Beads Enhanced by Polyamino-Modified 3D Carbon for Efficient Remediation of Organic Dyes in Wastewater. Separation and Purification Technology, 339, Article ID: 126637.
https://doi.org/10.1016/j.seppur.2024.126637
[10] Nadali Pishnamaz, H.M., Ranjbar, E. and Baghdadi, M. (2023) Application of Iron-Intercalated Graphite for Modification of Nickel Foam Cathode in Heterogeneous Electro-Fenton System: Bisphenol a Removal from Water at Neutral pH. Chemosphere, 339, Article ID: 139787.
https://doi.org/10.1016/j.chemosphere.2023.139787
[11] Nechchadi, B., Naribi, Z., Salhi, A., El Krati, M. and Tahiri, S. (2025) Synthesis, Characterisation and Photocatalytic Properties of ZnO/Carbonaceous Gelatin-Based Aerogel Material for Dyes Degradation in Water. Water, Air, & Soil Pollution, 236, Article No. 495.
https://doi.org/10.1007/s11270-025-08123-7
[12] Chen, X., Chen, C. and Zang, J. (2023) Bi2MoO6 Nanoflower-Like Microsphere Photocatalyst Modified by Boron Doped Carbon Quantum Dots: Improving the Photocatalytic Degradation Performance of BPA in All Directions. Journal of Alloys and Compounds, 962, Article ID: 171167.
https://doi.org/10.1016/j.jallcom.2023.171167
[13] dos Santos, C.R., Rosa e Silva, G.O., Dias Araújo, A.A., Serafim, T.G., Drumond, G.P., dos Santos, V.L., et al. (2025) Granular Anaerobic Membrane Bioreactor Coupled Hybrid Forward Osmosis—Membrane Distillation Module for Organic Matter, Nutrient and Bisphenol a Removal: Integrated Assessment of Performance, Cost, Toxicity, and Risks. Chemical Engineering Journal, 504, Article ID: 158022.
https://doi.org/10.1016/j.cej.2024.158022
[14] Yu, X., Su, H., Zou, J., Liu, Q., Wang, L. and Tang, H. (2022) Doping-Induced Metal-N Active Sites and Bandgap Engineering in Graphitic Carbon Nitride for Enhancing Photocatalytic H2 Evolution Performance. Chinese Journal of Catalysis, 43, 421-432.
https://doi.org/10.1016/s1872-2067(21)63849-4
[15] Yang, H., Sun, S., Yang, Q. and Cui, J. (2024) Supramolecular Self-Assembled Graphitic Carbon Nitride Catalyst: A Comprehensive Review on Design Principle, Synthesis Strategy, Functionalization and Application. Nano Materials Science.
https://doi.org/10.1016/j.nanoms.2024.10.014
[16] Han, E., Li, Y., Wang, Q., Huang, W., Luo, L., Hu, W., et al. (2019) Chlorine Doped Graphitic Carbon Nitride Nanorings as an Efficient Photoresponsive Catalyst for Water Oxidation and Organic Decomposition. Journal of Materials Science & Technology, 35, 2288-2296.
https://doi.org/10.1016/j.jmst.2019.05.057
[17] Bellamkonda, S., Shanmugam, R. and Gangavarapu, R.R. (2019) Extending the π-Electron Conjugation in 2D Planar Graphitic Carbon Nitride: Efficient Charge Separation for Overall Water Splitting. Journal of Materials Chemistry A, 7, 3757-3771.
https://doi.org/10.1039/c8ta10580d
[18] Liu, T., Zhu, W., Wang, N., Zhang, K., Wen, X., Xing, Y., et al. (2023) Preparation of Structure Vacancy Defect Modified Diatomic‐Layered g-C3N4 Nanosheet with Enhanced Photocatalytic Performance. Advanced Science, 10, Article ID: 2302503.
https://doi.org/10.1002/advs.202302503
[19] Zhang, R., Bi, L., Wang, D., Lin, Y., Zou, X., Xie, T., et al. (2020) Investigation on Various Photo-Generated Carrier Transfer Processes of SnS2/g-C3N4 Heterojunction Photocatalysts for Hydrogen Evolution. Journal of Colloid and Interface Science, 578, 431-440.
https://doi.org/10.1016/j.jcis.2020.04.033
[20] Tsang, C.H.A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan, Y., et al. (2019) Titanium Oxide Based Photocatalytic Materials Development and Their Role of in the Air Pollutants Degradation: Overview and Forecast. Environment International, 125, 200-228.
https://doi.org/10.1016/j.envint.2019.01.015
[21] Gao, M., Feng, J., Zhang, Z., Gu, M., Wang, J., Zeng, W., et al. (2018) Wrinkled Ultrathin Graphitic C3N4 Nanosheets for Photocatalytic Degradation of Organic Wastewater. ACS Applied Nano Materials, 1, 6733-6741.
https://doi.org/10.1021/acsanm.8b01528
[22] Yang, H., Zhang, A., Ding, J., Hu, R., Gong, Y., Li, X., et al. (2024) Amino Modulation on the Surface of Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Carbon, 219, Article ID: 118841.
https://doi.org/10.1016/j.carbon.2024.118841
[23] Yang, Y., Mao, B., Gong, G., Li, D., Liu, Y., Cao, W., et al. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Production. International Journal of Hydrogen Energy, 44, 15882-15891.
https://doi.org/10.1016/j.ijhydene.2019.01.102
[24] Zhang, C., Qin, D., Zhou, Y., Qin, F., Wang, H., Wang, W., et al. (2022) Dual Optimization Approach to Mo Single Atom Dispersed g-C3N4 Photocatalyst: Morphology and Defect Evolution. Applied Catalysis B: Environmental, 303, Article ID: 120904.
https://doi.org/10.1016/j.apcatb.2021.120904
[25] Wei, Q., Zhang, A., Yang, Z., Hu, S., Wang, D., Zhang, C., et al. (2023) Oxygen-Exfoliated Cobalt-Doped C3N4 for Superior Fenton-Like Catalysis: The Accessible Metal Exposure and Synergistic Pollutant Adsorption from Three-Dimensional Layered Configuration. Journal of Environmental Chemical Engineering, 11, Article ID: 111067.
https://doi.org/10.1016/j.jece.2023.111067
[26] Peng, Q., Ye, L., Wen, N., Chen, H., Zhu, Y., Niu, H., et al. (2025) Nitrogen Vacancy-Modified g-C3N4 Nanosheets Controlled by Deep Eutectic Solvents for Highly Efficient Photocatalytic Atrazine Degradation: Non-Radical Dominated Holes Oxidation. Separation and Purification Technology, 354, Article ID: 128879.
https://doi.org/10.1016/j.seppur.2024.128879
[27] Zhao, X., Liu, X., Yi, C., Li, J., Su, Y. and Guo, M. (2020) Palladium Nanoparticles Embedded in Yolk-Shell N-Doped Carbon Nanosphere@Void@SnO2 Composite Nanoparticles for the Photocatalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 3, 6574-6583.
https://doi.org/10.1021/acsanm.0c01038
[28] Ullah, R., Rafiq, M., Alamgir, Qadir, A., Ahmed, A., Fayaz, M., et al. (2025) Hollow Cavity Engineering of MOF-Derived Hierarchical Nitrogen-Doped In2O3@carbon for Efficient Photocatalytic Degradation of Tetracycline Hydrochloride. Journal of Water Process Engineering, 76, Article ID: 108311.
https://doi.org/10.1016/j.jwpe.2025.108311