[1]
|
Fatima, M., Farooq, R., Lindström, R.W. and Saeed, M. (2017) A Review on Biocatalytic Decomposition of Azo Dyes and Electrons Recovery. Journal of Molecular Liquids, 246, 275-281. https://doi.org/10.1016/j.molliq.2017.09.063
|
[2]
|
Liu, W., He, C., Zhu, B., Zhu, E., Zhang, Y., Chen, Y., et al. (2023) Progress in Wastewater Treatment via Organic Supramolecular Photocatalysts under Sunlight Irradiation. Chinese Journal of Catalysis, 53, 13-30. https://doi.org/10.1016/s1872-2067(23)64530-9
|
[3]
|
Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C. and Bergamasco, R. (2019) Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere, 222, 766-780. https://doi.org/10.1016/j.chemosphere.2019.02.009
|
[4]
|
Varjani, S., Rakholiya, P., Shindhal, T., Shah, A.V. and Ngo, H.H. (2021) Trends in Dye Industry Effluent Treatment and Recovery of Value Added Products. Journal of Water Process Engineering, 39, Article ID: 101734. https://doi.org/10.1016/j.jwpe.2020.101734
|
[5]
|
Hundessa, N.K., Hu, C., Kang, D., Chou, P., Ajebe, E.G., Lee, K., et al. (2024) Ultra-High Flux Loose Nanofiltration Membrane Based on Metal Organic Framework (CAU-10-H)/P84 Co-Polyimide for Dye/Salt Fractionation from Industrial Waste Water. Desalination, 586, Article ID: 117871. https://doi.org/10.1016/j.desal.2024.117871
|
[6]
|
Kumari, H., Ranga, R., Chahal, S., Devi, S., et al. (2023) A Review on Photocatalysis Used for Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollution, 234, Article No. 349. https://doi.org/10.1007/s11270-023-06359-9
|
[7]
|
Liu, Q., Zhou, Y., Lu, J. and Zhou, Y. (2020) Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere, 241, Article ID: 125043. https://doi.org/10.1016/j.chemosphere.2019.125043
|
[8]
|
Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z. and Wang, R. (2022) Strong Adsorption Properties and Mechanism of Action with Regard to Tetracycline Adsorption of Double-Network Polyvinyl Alcohol-Copper Alginate Gel Beads. Journal of Hazardous Materials, 422, Article ID: 126863. https://doi.org/10.1016/j.jhazmat.2021.126863
|
[9]
|
Li, X., Li, K., Wu, J., Li, B., Wang, W. and Tang, J. (2024) Facile Preparation of Sodium Alginate Gel Beads Enhanced by Polyamino-Modified 3D Carbon for Efficient Remediation of Organic Dyes in Wastewater. Separation and Purification Technology, 339, Article ID: 126637. https://doi.org/10.1016/j.seppur.2024.126637
|
[10]
|
Nadali Pishnamaz, H.M., Ranjbar, E. and Baghdadi, M. (2023) Application of Iron-Intercalated Graphite for Modification of Nickel Foam Cathode in Heterogeneous Electro-Fenton System: Bisphenol a Removal from Water at Neutral pH. Chemosphere, 339, Article ID: 139787. https://doi.org/10.1016/j.chemosphere.2023.139787
|
[11]
|
Nechchadi, B., Naribi, Z., Salhi, A., El Krati, M. and Tahiri, S. (2025) Synthesis, Characterisation and Photocatalytic Properties of ZnO/Carbonaceous Gelatin-Based Aerogel Material for Dyes Degradation in Water. Water, Air, & Soil Pollution, 236, Article No. 495. https://doi.org/10.1007/s11270-025-08123-7
|
[12]
|
Chen, X., Chen, C. and Zang, J. (2023) Bi2MoO6 Nanoflower-Like Microsphere Photocatalyst Modified by Boron Doped Carbon Quantum Dots: Improving the Photocatalytic Degradation Performance of BPA in All Directions. Journal of Alloys and Compounds, 962, Article ID: 171167. https://doi.org/10.1016/j.jallcom.2023.171167
|
[13]
|
dos Santos, C.R., Rosa e Silva, G.O., Dias Araújo, A.A., Serafim, T.G., Drumond, G.P., dos Santos, V.L., et al. (2025) Granular Anaerobic Membrane Bioreactor Coupled Hybrid Forward Osmosis—Membrane Distillation Module for Organic Matter, Nutrient and Bisphenol a Removal: Integrated Assessment of Performance, Cost, Toxicity, and Risks. Chemical Engineering Journal, 504, Article ID: 158022. https://doi.org/10.1016/j.cej.2024.158022
|
[14]
|
Yu, X., Su, H., Zou, J., Liu, Q., Wang, L. and Tang, H. (2022) Doping-Induced Metal-N Active Sites and Bandgap Engineering in Graphitic Carbon Nitride for Enhancing Photocatalytic H2 Evolution Performance. Chinese Journal of Catalysis, 43, 421-432. https://doi.org/10.1016/s1872-2067(21)63849-4
|
[15]
|
Yang, H., Sun, S., Yang, Q. and Cui, J. (2024) Supramolecular Self-Assembled Graphitic Carbon Nitride Catalyst: A Comprehensive Review on Design Principle, Synthesis Strategy, Functionalization and Application. Nano Materials Science. https://doi.org/10.1016/j.nanoms.2024.10.014
|
[16]
|
Han, E., Li, Y., Wang, Q., Huang, W., Luo, L., Hu, W., et al. (2019) Chlorine Doped Graphitic Carbon Nitride Nanorings as an Efficient Photoresponsive Catalyst for Water Oxidation and Organic Decomposition. Journal of Materials Science & Technology, 35, 2288-2296. https://doi.org/10.1016/j.jmst.2019.05.057
|
[17]
|
Bellamkonda, S., Shanmugam, R. and Gangavarapu, R.R. (2019) Extending the π-Electron Conjugation in 2D Planar Graphitic Carbon Nitride: Efficient Charge Separation for Overall Water Splitting. Journal of Materials Chemistry A, 7, 3757-3771. https://doi.org/10.1039/c8ta10580d
|
[18]
|
Liu, T., Zhu, W., Wang, N., Zhang, K., Wen, X., Xing, Y., et al. (2023) Preparation of Structure Vacancy Defect Modified Diatomic‐Layered g-C3N4 Nanosheet with Enhanced Photocatalytic Performance. Advanced Science, 10, Article ID: 2302503. https://doi.org/10.1002/advs.202302503
|
[19]
|
Zhang, R., Bi, L., Wang, D., Lin, Y., Zou, X., Xie, T., et al. (2020) Investigation on Various Photo-Generated Carrier Transfer Processes of SnS2/g-C3N4 Heterojunction Photocatalysts for Hydrogen Evolution. Journal of Colloid and Interface Science, 578, 431-440. https://doi.org/10.1016/j.jcis.2020.04.033
|
[20]
|
Tsang, C.H.A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan, Y., et al. (2019) Titanium Oxide Based Photocatalytic Materials Development and Their Role of in the Air Pollutants Degradation: Overview and Forecast. Environment International, 125, 200-228. https://doi.org/10.1016/j.envint.2019.01.015
|
[21]
|
Gao, M., Feng, J., Zhang, Z., Gu, M., Wang, J., Zeng, W., et al. (2018) Wrinkled Ultrathin Graphitic C3N4 Nanosheets for Photocatalytic Degradation of Organic Wastewater. ACS Applied Nano Materials, 1, 6733-6741. https://doi.org/10.1021/acsanm.8b01528
|
[22]
|
Yang, H., Zhang, A., Ding, J., Hu, R., Gong, Y., Li, X., et al. (2024) Amino Modulation on the Surface of Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Carbon, 219, Article ID: 118841. https://doi.org/10.1016/j.carbon.2024.118841
|
[23]
|
Yang, Y., Mao, B., Gong, G., Li, D., Liu, Y., Cao, W., et al. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Production. International Journal of Hydrogen Energy, 44, 15882-15891. https://doi.org/10.1016/j.ijhydene.2019.01.102
|
[24]
|
Zhang, C., Qin, D., Zhou, Y., Qin, F., Wang, H., Wang, W., et al. (2022) Dual Optimization Approach to Mo Single Atom Dispersed g-C3N4 Photocatalyst: Morphology and Defect Evolution. Applied Catalysis B: Environmental, 303, Article ID: 120904. https://doi.org/10.1016/j.apcatb.2021.120904
|
[25]
|
Wei, Q., Zhang, A., Yang, Z., Hu, S., Wang, D., Zhang, C., et al. (2023) Oxygen-Exfoliated Cobalt-Doped C3N4 for Superior Fenton-Like Catalysis: The Accessible Metal Exposure and Synergistic Pollutant Adsorption from Three-Dimensional Layered Configuration. Journal of Environmental Chemical Engineering, 11, Article ID: 111067. https://doi.org/10.1016/j.jece.2023.111067
|
[26]
|
Peng, Q., Ye, L., Wen, N., Chen, H., Zhu, Y., Niu, H., et al. (2025) Nitrogen Vacancy-Modified g-C3N4 Nanosheets Controlled by Deep Eutectic Solvents for Highly Efficient Photocatalytic Atrazine Degradation: Non-Radical Dominated Holes Oxidation. Separation and Purification Technology, 354, Article ID: 128879. https://doi.org/10.1016/j.seppur.2024.128879
|
[27]
|
Zhao, X., Liu, X., Yi, C., Li, J., Su, Y. and Guo, M. (2020) Palladium Nanoparticles Embedded in Yolk-Shell N-Doped Carbon Nanosphere@Void@SnO2 Composite Nanoparticles for the Photocatalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 3, 6574-6583. https://doi.org/10.1021/acsanm.0c01038
|
[28]
|
Ullah, R., Rafiq, M., Alamgir, Qadir, A., Ahmed, A., Fayaz, M., et al. (2025) Hollow Cavity Engineering of MOF-Derived Hierarchical Nitrogen-Doped In2O3@carbon for Efficient Photocatalytic Degradation of Tetracycline Hydrochloride. Journal of Water Process Engineering, 76, Article ID: 108311. https://doi.org/10.1016/j.jwpe.2025.108311
|