[1]
|
Dian 何岭松. 《数字信号分析理论与实践》教学案例集之: 信号的盲源分离和ICA独立成分分析[EB/OL]. https://zhuanlan.zhihu.com/p/692594809, 2025-05-06.
|
[2]
|
何丹丹, 刘润杰, 申金媛, 陈园园. 盲信号分离算法综述[J]. 光电子学, 2011(1): 1.
|
[3]
|
Kurisu, D., Fukami, R. and Koike, Y. (2022) Adaptive Deep Learning for Nonlinear Time Series Models. https://arxiv.org/abs/2207.02546
|
[4]
|
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al. (2019) Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature, 566, 195-204. https://doi.org/10.1038/s41586-019-0912-1
|
[5]
|
Hemanth, D.J. (2021) Automated Feature Extraction in Deep Learning Models: A Boon or a Bane? 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, 20-21 October 2021, 3. https://doi.org/10.23919/eecsi53397.2021.9624287
|
[6]
|
Reddy, P., Wisdom, S., Greff, K., Hershey, J.R. and Kipf, T. (2023) AudioSlots: A Slot-Centric Generative Model for Audio Separation. http://arxiv.org/abs/2305.05591
|
[7]
|
王景景, 李爽, 杨星海, 吴承安, 郑轶, 鄢社锋, 乔钢, 施威, 张祥光, 郭瑛, 李海涛. 基于机器学习和FFT的盲源分离信源数目并行估计方法[P]. 中国, CN112861066B. 2022-05-17.
|
[8]
|
邱媛媛, 王皓辰. 基于深度学习的领域自适应目标检测算法研究[J]. 人工智能与机器人研究, 2024, 13(3): 503-514.
|
[9]
|
Thompson, N.C., Greenewald, K., Lee, K. and Manso, G.F. (2022) The Computational Limits of Deep Learning. http://arxiv.org/abs/2007.05558
|
[10]
|
Li, Y., Daho, M.E.H., Conze, P.H., Zeghlache, R., Boité, H.L., Tadayoni, R., et al. (2024) A Review of Deep Learning-Based Information Fusion Techniques for Multimodal Medical Image Classification. http://arxiv.org/abs/2404.15022
|
[11]
|
Detection de grandeurs primitives dans un message composite par une architeture de calcul neuromimetique en apprentissage non supervise. https://www.researchgate.net/publication/27606213_Detection_de_grandeurs_primitives_dans_un_message_composite_par_une_architeture_de_calcul_neuromimetique_en_apprentissage_non_supervise
|
[12]
|
Jain, S. and Rai, D. (2012) Blind Source Separation and ICA Techniques: A Review. International Journal of Environmental Science and Technology, 4, 1490-1503.
|
[13]
|
苗水清, 闫文耀, 张静, 吴梦蝶. 基于FFT和PCA的图像压缩方法研究[J]. 佳木斯大学学报(自然科学版), 2022, 40(3): 29-32.
|
[14]
|
殷玉玲, 罗兰花. 高维数据降维算法综述[J]. 电脑知识与技术, 2025, 21(6): 12-14, 26.
|
[15]
|
Sadkhan, S.B. and Abbas, N.A. (2009) Higher Order Statistics and Their Roles in Blind Source Separation (BSS). MASAUM Journal of Computing, 1, 227-234.
|
[16]
|
Lv, S. and Zhang, C. (2014) Blind Signal Separation for Speech Signals with Noise. 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, 3-6 August 2014, 1850-1855. https://doi.org/10.1109/icma.2014.6885983
|
[17]
|
陆维, 吴锡. 基于深度学习的复杂天气场景交通标志检测[J]. 软件导刊, 2025, 24(6): 175-184.
|
[18]
|
深度学习: 数据特征与复杂模式的探索[EB/OL]. 百度开发者中心. https://developer.baidu.com/article/details/1847863, 2025-06-10.
|
[19]
|
沈越泓, 苏巧, 袁志刚, 简伟, 黄葆华, 魏以民. 一种分离时频域混合信号的方法[P]. 中国, CN103870875A. 2014-06-18.
|
[20]
|
毛琳, 任凤至, 杨大伟, 张汝波. 时频域联合全景分割卷积神经网络及应用[P]. 中国, CN113536905A. 2021-10-22.
|
[21]
|
Gao, X. and Gao, R. (2025) Music Signal Recognition Aids Based on Convolutional Neural Networks in Music Education. Systems and Soft Computing, 7, Article ID: 200219. https://doi.org/10.1016/j.sasc.2025.200219
|
[22]
|
孙林慧, 王春艳, 张蒙. 基于全卷积神经网络多任务学习的时域语音分离[J]. 信号处理, 2024, 40(12): 2228-2237.
|
[23]
|
李端, 张洪欣, 刘知青, 黄菊香, 王田. 基于深度残差卷积神经网络的心电信号心律不齐识别[J]. 生物医学工程学杂志, 2019, 36(2): 189-198.
|
[24]
|
Li, J., Yan, Y., Liao, S., Yang, X. and Shao, L. (2021) Local-to-Global Self-Attention in Vision Transformers. http://arxiv.org/abs/2107.04735
|
[25]
|
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2023) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 6000-6010. http://arxiv.org/abs/1706.03762
|
[26]
|
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
|
[27]
|
赖鸣姝. 基于Transformer的自然语言处理模型综述[J]. 人工智能与机器人研究, 2023, 12(3): 219.
|
[28]
|
Subakan, C., Ravanelli, M., Cornell, S., Bronzi, M. and Zhong, J. (2021) Attention Is All You Need in Speech Separation. http://arxiv.org/abs/2010.13154
|
[29]
|
Fan, C., Yuan, X. and Zhang, Y. (2019) CNN-Based Signal Detection for Banded Linear Systems. IEEE Transactions on Wireless Communications, 18, 4394-4407. https://doi.org/10.1109/twc.2019.2924424
|
[30]
|
Ranganath, A., Muñoz, J.O., Smith, R., Singhal, M. and Marcia, R. (2024) Image Separation Using Transformer Attention Models. 2024 IEEE International Conference on Future Machine Learning and Data Science (FMLDS), Sydney, 20-23 November 2024, 331-336. https://doi.org/10.1109/fmlds63805.2024.00066
|
[31]
|
Wang, H., Wu, X., Huang, Z. and Xing, E.P. (2020) High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks. http://arxiv.org/abs/1905.13545
|
[32]
|
Alijani, S., Fayyad, J. and Najjaran, H. (2024) Vision Transformers in Domain Adaptation and Domain Generalization: A Study of Robustness. Neural Computing and Applications, 36, 17979-18007. https://doi.org/10.1007/s00521-024-10353-5
|
[33]
|
Guo, P., Yu, M., Shen, L., Lin, Z., An, K. and Wang, J. (2024) Single-Channel Blind Source Separation in Wireless Communications: A Complex-Domain Deep Learning Approach. IEEE Wireless Communications Letters, 13, 1645-1649. https://doi.org/10.1109/lwc.2024.3384813
|
[34]
|
Guo, P., Yao, F., Yu, M., Li, C., Tang, Y. and Ning, Z. (2025) Single-Channel Blind Source Separation Empowered Joint Transceiver Optimization for Wireless Communications Using Deep Learning. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2025.04.008
|
[35]
|
刘学博, 户保田, 陈科海, 张民. 大模型关键技术与未来发展方向——从ChatGPT谈起[J]. 中国科学基金, 2023, 37(5): 758-766.
|
[36]
|
陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29(7): 2071-2091.
|
[37]
|
Yue, X.B. (2015) The Influence of the Amount of Parameters in Different Layers on the Performance of Deep Learning Models. Computer Science and Application, 5, 445-453. https://doi.org/10.12677/csa.2015.512056
|
[38]
|
李宁, 陈海庭. 欠定条件下弱稀疏源信号混合矩阵盲估计[J]. 数据采集与处理, 2015, 30(4): 793-801.
|
[39]
|
Ruiz, H., Jarman, I.H., Martin, J.D., Ortega-Martorell, S., Vellido, A., Romero, E., et al. (2012). Towards Interpretable Classifiers with Blind Signal Separation. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, 10-15 June 2012, 1-7. https://doi.org/10.1109/ijcnn.2012.6252783
|
[40]
|
化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(3): 1-12.
|
[41]
|
解元, 张旭, 邹涛, 马鸽, 孙为军. 面向带混响和噪声环境的心肺音混合信号盲分离[J]. 信息与控制, 2025, 54(1): 150-160.
|
[42]
|
汪旭童, 尹捷, 刘潮歌, 徐辰晨, 黄昊, 王志, 张方娇. 神经网络后门攻击与防御综述[J]. 计算机学报, 2024, 47(8): 1713-1743.
|
[43]
|
周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943.
|
[44]
|
王文萱, 汪成磊, 齐慧慧, 叶梦昊, 张艳宁. 面向深度模型的对抗攻击与对抗防御技术综述[J]. 信号处理, 2025, 41(2): 198-223.
|
[45]
|
Webster, M.B., Lee, D. and Lee, J. (2025) Self-Supervised Autoencoder Network for Robust Heart Rate Extraction from Noisy Photo-Plethysmogram: Applying Blind Source Separation to Biosignal Analysis. http://arxiv.org/abs/2504.09132
|
[46]
|
Mosqueira-Rey, E., Hernández-Pereira, E., Bobes-Bascarán, J., Alonso-Ríos, D., Pérez-Sánchez, A., Fernández-Leal, Á., et al. (2023) Addressing the Data Bottleneck in Medical Deep Learning Models Using a Human-in-the-Loop Machine Learning Approach. Neural Computing and Applications, 36, 2597-2616. https://doi.org/10.1007/s00521-023-09197-2
|
[47]
|
Obradovic, D. and Deco, G. (1997) Unsupervised Learning for Blind Source Separation: An Information-Theoretic Approach. 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, 127-130. https://doi.org/10.1109/icassp.1997.599567
|
[48]
|
杨轩, 王子颖, 张力, 赵恒, 洪弘. 基于盲源分离的多人呼吸信号检测方法[J]. 雷达学报(中英文), 2025, 14(1): 117-134.
|
[49]
|
徐光辉, 侯芳芳. 一种用于安防的图像识别方法、系统、终端及存储介质[P]. 中国, CN111832478A. 2020-10-27.
|
[50]
|
刘建伟, 丁熙浩, 罗雄麟. 多模态深度学习综述[J]. 计算机应用研究, 2020, 37(6): 1601-1614.
|
[51]
|
杨维娜, 裴以建, 蔡光卉, 肖敏. 基于信息论的盲源信号分离[J]. 云南大学学报(自然科学版), 2008, 30(5): 460-464, 471.
|
[52]
|
Levin, D.N. (2008) Using State Space Differential Geometry for Nonlinear Blind Source Separation. Journal of Applied Physics, 103, Article ID: 044906. https://doi.org/10.1063/1.2826943
|
[53]
|
Wang, T., Yang, F. and Yang, J. (2022) Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 802-815. https://doi.org/10.1109/taslp.2022.3145304
|