[1]
|
Jokinen, E. (2015) Obesity and Cardiovascular Disease. Minerva Pediatr, 67, 25-32.
|
[2]
|
朱丽娜, 朱瑛, 王琼, 等. 早发冠心病与基因多态性的相关研究进展[J]. 广州医药, 2025, 56(3): 310-315.
|
[3]
|
陈润林, 廖江波, 皮建彬, 等. 早发冠心病危险因素分析及列线图模型构建[J]. 现代医学, 2025, 53(4): 522-529.
|
[4]
|
孙宇阳, 刘晓丽, 韩红亚, 等. 早发冠心病合并抑郁的现状及研究进展[J]. 中国医药, 2025, 20(2): 288-292.
|
[5]
|
Byrne, R.A., Rossello, X., Coughlan, J.J., Barbato, E., Berry, C., Chieffo, A., et al. (2023) 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. European Heart Journal: Acute Cardiovascular Care, 13, 55-161. https://doi.org/10.1093/ehjacc/zuad107
|
[6]
|
Chien, S., Chen, C., Leu, H., Su, C., Yin, W., Tseng, W., et al. (2017) Association of Low Serum Albumin Concentration and Adverse Cardiovascular Events in Stable Coronary Heart Disease. International Journal of Cardiology, 241, 1-5. https://doi.org/10.1016/j.ijcard.2017.04.003
|
[7]
|
GBD 2019 Diseases and Injuries Collaborators (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 1204-1222.
|
[8]
|
Rona, G. (1966) The Pathogenesis of Human Myocardial Infarction. Canadian Medical Association Journal, 95, 1012-1019.
|
[9]
|
Falk, E. (2006) Pathogenesis of Atherosclerosis. Journal of the American College of Cardiology, 47, C7-C12. https://doi.org/10.1016/j.jacc.2005.09.068
|
[10]
|
Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. (2014) Mechanisms of Plaque Formation and Rupture. Circulation Research, 114, 1852-1866. https://doi.org/10.1161/circresaha.114.302721
|
[11]
|
冯世华, 朱国斌, 王瑾. 45岁以下人群急性心肌梗死危险因素的研究进展[J]. 中西医结合心脑血管病杂志, 2023, 21(24): 4554-4557.
|
[12]
|
Lawler, P.R., Bhatt, D.L., Godoy, L.C., Lüscher, T.F., Bonow, R.O., Verma, S., et al. (2021) Targeting Cardiovascular Inflammation: Next Steps in Clinical Translation. European Heart Journal, 42, 113-131. https://doi.org/10.1093/eurheartj/ehaa099
|
[13]
|
Buerke, M., Sheriff, A. and Garlichs, C.D. (2022) CRP-Apherese bei akutem myokardinfarkt bzw. COVID-19. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 117, 191-199. https://doi.org/10.1007/s00063-022-00911-x
|
[14]
|
Moroni, F., Corna, G., Del Buono, M.G., Golino, M., Talasaz, A.H., Decotto, S., et al. (2024) Impact of C-Reactive Protein Levels and Role of Anakinra in Patients with St-Elevation Myocardial Infarction. International Journal of Cardiology, 398, Article 131610. https://doi.org/10.1016/j.ijcard.2023.131610
|
[15]
|
Zhang, S., Xu, W., Xu, J., Qiu, Y., Wan, Y. and Fan, Y. (2024) Association of C-Reactive Protein Level with Adverse Outcomes in Patients with Atrial Fibrillation: A Meta-Analysis. The American Journal of the Medical Sciences, 367, 41-48. https://doi.org/10.1016/j.amjms.2023.11.009
|
[16]
|
殷宇刚, 陈祥俊. 老年同型半胱氨酸与C反应蛋白水平与冠心病发病的相关性[J]. 山东医药, 2010, 50(49): 71-72.
|
[17]
|
金旭, 张立晶. C-反应蛋白联合肌钙蛋白I检测在急性冠状动脉综合征诊断中的应用[J]. 中国现代医学杂志, 2010, 20(23): 3671-3673.
|
[18]
|
Rothschild, M.A., Oratz, M. and Schreiber, S.S. (1969) Serum Albumin. The American Journal of Digestive Diseases, 14, 711-744. https://doi.org/10.1007/bf02233577
|
[19]
|
Yoshioka, G., Tanaka, A., Nishihira, K., Shibata, Y. and Node, K. (2020) Prognostic Impact of Serum Albumin for Developing Heart Failure Remotely after Acute Myocardial Infarction. Nutrients, 12, Article 2637. https://doi.org/10.3390/nu12092637
|
[20]
|
Manolis, A.A., Manolis, T.A., Melita, H., Mikhailidis, D.P. and Manolis, A.S. (2022) Low Serum Albumin: A Neglected Predictor in Patients with Cardiovascular Disease. European Journal of Internal Medicine, 102, 24-39. https://doi.org/10.1016/j.ejim.2022.05.004
|
[21]
|
Ronit, A., Kirkegaard-Klitbo, D.M., Dohlmann, T.L., Lundgren, J., Sabin, C.A., Phillips, A.N., et al. (2020) Plasma Albumin and Incident Cardiovascular Disease: Results from the CGPS and an Updated Meta-Analysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 473-482. https://doi.org/10.1161/atvbaha.119.313681
|
[22]
|
Huang, T., An, Z., Huang, Z., Gao, W., Hao, B. and Xu, J. (2024) Serum Albumin and Cardiovascular Disease: A Mendelian Randomization Study. BMC Cardiovascular Disorders, 24, Article No. 196. https://doi.org/10.1186/s12872-024-03873-4
|
[23]
|
Kurniawan, R.B., Oktafia, P., Saputra, P.B.T., Purwati, D.D., Saputra, M.E., Maghfirah, I., et al. (2024) The Roles of C-Reactive Protein-Albumin Ratio as a Novel Prognostic Biomarker in Heart Failure Patients: A Systematic Review. Current Problems in Cardiology, 49, Article 102475. https://doi.org/10.1016/j.cpcardiol.2024.102475
|
[24]
|
Sabanoglu, C. and Inanc, I.H. (2022) C-Reactive Protein to Albumin Ratio Predicts for Severity of Coronary Artery Disease and Ischemia. European Review for Medical and Pharmacological Sciences, 26, 7623-7631.
|
[25]
|
Kalyoncuoglu, M. and Durmus, G. (2020) Relationship between C-Reactive Protein-To-Albumin Ratio and the Extent of Coronary Artery Disease in Patients with Non-St-Elevated Myocardial Infarction. Coronary Artery Disease, 31, 130-136. https://doi.org/10.1097/mca.0000000000000768
|
[26]
|
Liu, D., Yun, Y., Yang, D., Hu, X., Dong, X., Zhang, N., et al. (2019) What Is the Biological Function of Uric Acid? An Antioxidant for Neural Protection or a Biomarker for Cell Death. Disease Markers, 2019, Article ID: 4081962. https://doi.org/10.1155/2019/4081962
|
[27]
|
Cai, W., Duan, X., Liu, Y., Yu, J., Tang, Y., Liu, Z., et al. (2017) Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. BioMed Research International, 2017, Article ID: 4391920. https://doi.org/10.1155/2017/4391920
|
[28]
|
Cheng, Z., Zheng, T., Zhang, D., Yang, J., Hu, X., Yin, C., et al. (2021) High-Level Uric Acid in Asymptomatic Hyperuricemia Could Be an Isolated Risk Factor of Cardio-Cerebrovascular Diseases: A Prospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 31, 3415-3425. https://doi.org/10.1016/j.numecd.2021.08.043
|
[29]
|
Yin, W., Zhou, Q., OuYang, S., Chen, Y., Gong, Y. and Liang, Y. (2019) Uric Acid Regulates NLRP3/Il-1β Signaling Pathway and Further Induces Vascular Endothelial Cells Injury in Early CKD through ROS Activation and K+ Efflux. BMC Nephrology, 20, Article No. 319. https://doi.org/10.1186/s12882-019-1506-8
|
[30]
|
Wang, K., Zhang, Y., Zhou, M., Du, Y., Li, P., Guan, C., et al. (2023) HDAC Inhibitors Alleviate Uric Acid-Induced Vascular Endothelial Cell Injury by Way of the HDAC6/FGF21/PI3K/AKT Pathway. Journal of Cardiovascular Pharmacology, 81, 150-164. https://doi.org/10.1097/fjc.0000000000001372
|
[31]
|
Sultana, S., K, M.S., Prakash, V.R., Karthikeyan, A., Aslam S, S.M., C, S.G., et al. (2023) Evaluation of Uric Acid to Albumin Ratio as a Marker of Coronary Artery Disease Severity in Acute Coronary Syndrome: A Cross-Sectional Study. Cureus, 15, e49454. https://doi.org/10.7759/cureus.49454
|
[32]
|
Rothenbacher, D., Kleiner, A., Koenig, W., Primatesta, P., Breitling, L.P. and Brenner, H. (2012) Relationship between Inflammatory Cytokines and Uric Acid Levels with Adverse Cardiovascular Outcomes in Patients with Stable Coronary Heart Disease. PLOS ONE, 7, e45907. https://doi.org/10.1371/journal.pone.0045907
|
[33]
|
Strazzullo, P. and Puig, J.G. (2007) Uric Acid and Oxidative Stress: Relative Impact on Cardiovascular Risk. Nutrition, Metabolism and Cardiovascular Diseases, 17, 409-414. https://doi.org/10.1016/j.numecd.2007.02.011
|
[34]
|
Purnima, S. and El-Aal, B.G.A. (2016) Serum Uric Acid as Prognostic Marker of Coronary Heart Disease (CHD). Clínica e Investigación en Arteriosclerosis, 28, 216-224. https://doi.org/10.1016/j.arteri.2016.05.006
|
[35]
|
Kleber, M.E., Delgado, G., Grammer, T.B., Silbernagel, G., Huang, J., Krämer, B.K., et al. (2015) Uric Acid and Cardiovascular Events: A Mendelian Randomization Study. Journal of the American Society of Nephrology, 26, 2831-2838. https://doi.org/10.1681/asn.2014070660
|
[36]
|
Gayretli Yayla, K., Yayla, C., Erdol, M.A., Karanfil, M., Ertem, A.G. and Akcay, A.B. (2021) Relationship between C-Reactive Protein to Albumin Ratio and Infarct-Related Artery Patency in Patients with St-Segment Elevation Myocardial Infarction. Angiology, 73, 260-264. https://doi.org/10.1177/00033197211024047
|
[37]
|
Cirakoglu, O.F., Aslan, A.O., Yilmaz, A.S., Şahin, S. and Akyüz, A.R. (2020) Association between C-Reactive Protein to Albumin Ratio and Left Ventricular Thrombus Formation Following Acute Anterior Myocardial Infarction. Angiology, 71, 804-811. https://doi.org/10.1177/0003319720933431
|
[38]
|
Zhang, S., Wang, Y., Cheng, J., Huangfu, N., Zhao, R., Xu, Z., et al. (2019) Hyperuricemia and Cardiovascular Disease. Current Pharmaceutical Design, 25, 700-709. https://doi.org/10.2174/1381612825666190408122557
|
[39]
|
Rong, J., Fang, C., Chen, X., Hong, C. and Huang, L. (2023) Association of Serum Uric Acid with Prognosis in Patients with Myocardial Infarction: An Update Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 23, Article No. 512. https://doi.org/10.1186/s12872-023-03523-1
|
[40]
|
Shen, S., He, F., Cheng, C., Xu, B. and Sheng, J. (2021) Uric Acid Aggravates Myocardial Ischemia-Reperfusion Injury via ROS/NLRP3 Pyroptosis Pathway. Biomedicine & Pharmacotherapy, 133, Article 110990. https://doi.org/10.1016/j.biopha.2020.110990
|
[41]
|
Wu, H., Dai, R., Wang, M. and Chen, C. (2023) Uric Acid Promotes Myocardial Infarction Injury via Activating Pyrin Domain-Containing 3 Inflammasome and Reactive Oxygen Species/Transient Receptor Potential Melastatin 2/Ca2+Pathway. BMC Cardiovascular Disorders, 23, Article No. 10. https://doi.org/10.1186/s12872-023-03040-1
|
[42]
|
Park, J., Noh, J., Kim, J., Lee, H., Kim, K. and Park, J. (2022) Gene Dose-Dependent and Additive Effects of ABCG2 Rs2231142 and SLC2A9 Rs3733591 Genetic Polymorphisms on Serum Uric Acid Levels. Metabolites, 12, Article 1192. https://doi.org/10.3390/metabo12121192
|