|
[1]
|
王莹, 方俊文, 高鹏. 2023年我国磷复肥行业运行情况及发展趋势[J]. 生态产业科学与磷氟工程, 2024, 39(7): 1-8.
|
|
[2]
|
崔荣政, 王臣, 修学峰. 2023年我国磷石膏综合利用情况及产业发展现状分析[J]. 生态产业科学与磷氟工程, 2024, 39(11): 1-6.
|
|
[3]
|
Jha, A.K. and Sivapullaiah, P.V. (2016) Volume Change Behavior of Lime Treated Gypseous Soil—Influence of Mineralogy and Microstructure. Applied Clay Science, 119, 202-212. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, Y., Wang, L., Song, P. and Wang, Q. (2017) Effects of Magnesium Potassium Phosphate Cements Mixed with Silica Fume on the Solidification and Reduction of Municipal Sludge. IOP Conference Series: Materials Science and Engineering, 167, Article 012003. [Google Scholar] [CrossRef]
|
|
[5]
|
Ji, X., Dai, C., Cui, Z., et al. (2021) Research on Engineering Characteristics of Curing Agent Stabilized Phosphogypsum Roadbed Filler. China Journal of Highway and Transport, 34, 225-233.
|
|
[6]
|
Fu, R., Lu, Y., Wang, L., An, H., Chen, S. and Kong, D. (2024) The Effects of Admixtures on the Durability Properties of Phosphogypsum-Based Cementitious Materials. Construction and Building Materials, 411, Article 134379. [Google Scholar] [CrossRef]
|
|
[7]
|
黄绪泉, 蔡家伟, 赵小蓉, 等. 硅酸钠改性磷石膏道路稳定材料性能及固化机理[J]. 硅酸盐通报, 2024, 43(12): 4471-4479.
|
|
[8]
|
Chen, P., Ma, B., Tan, H., Lv, Z., Li, M. and Wu, L. (2023) Utilization of Tricalcium Aluminate as Modifier on Phosphogypsum-Based Full Solid-Waste Cementitious Material. Construction and Building Materials, 377, Article 131034. [Google Scholar] [CrossRef]
|
|
[9]
|
Ye, S., Feng, P., Liu, Y., Liu, J. and Bullard, J.W. (2020) Dissolution and Early Hydration of Tricalcium Aluminate in Aqueous Sulfate Solutions. Cement and Concrete Research, 137, Article 106191. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, P., Ouyang, S., Li, P., Sun, Z., Ding, N. and Huang, Y. (2020) Ultrahigh Removal Performance of Lead from Wastewater by Tricalcium Aluminate via Precipitation Combining Flocculation with Amorphous Aluminum. Journal of Cleaner Production, 246, Article 118728. [Google Scholar] [CrossRef]
|
|
[11]
|
Collins, P.J., Grugel, R.N. and Radlińska, A. (2021) Hydration of Tricalcium Aluminate and Gypsum Pastes on the International Space Station. Construction and Building Materials, 285, Article 122919. [Google Scholar] [CrossRef]
|
|
[12]
|
Wang, Y., Xu, L., He, X., Su, Y., Miao, W., Strnadel, B., et al. (2022) Hydration and Rheology of Activated Ultra-Fine Ground Granulated Blast Furnace Slag with Carbide Slag and Anhydrous Phosphogypsum. Cement and Concrete Composites, 133, Article 104727. [Google Scholar] [CrossRef]
|
|
[13]
|
Chen, P., Ma, B., Tan, H., Wu, L., Zheng, Z., He, X., et al. (2022) Improving the Mechanical Property and Water Resistance of β-Hemihydrate Phosphogypsum by Incorporating Ground Blast-Furnace Slag and Steel Slag. Construction and Building Materials, 344, Article 128265. [Google Scholar] [CrossRef]
|
|
[14]
|
Huang, Y. and Lin, Z. (2010) Investigation on Phosphogypsum-Steel Slag-Granulated Blast-Furnace Slag-Limestone Cement. Construction and Building Materials, 24, 1296-1301. [Google Scholar] [CrossRef]
|
|
[15]
|
Hu, Y., Ren, X., Ye, J., Luan, Z. and Zhang, W. (2022) The Reactive Products and Reactivity of Modified Red Mud and Ground Granulated Blast Furnace Slag at Different Alkalinities. Construction and Building Materials, 346, Article 128471. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhou, Y., Pu, S., Han, F., Zhang, H. and Zhang, Z. (2022) Effect of Ultrafine Slag on Hydration Heat and Rheology Properties of Portland Cement Paste. Powder Technology, 405, Article 117549. [Google Scholar] [CrossRef]
|
|
[17]
|
Qin, X., Cao, Y., Guan, H., Hu, Q., Liu, Z., Xu, J., et al. (2023) Resource Utilization and Development of Phosphogypsum-Based Materials in Civil Engineering. Journal of Cleaner Production, 387, Article 135858. [Google Scholar] [CrossRef]
|
|
[18]
|
Lin, R., Huang, G., Ma, F., Pan, T., Wang, X., Han, Y., et al. (2024) Investigation of Phosphogypsum-Based Cementitious Materials: The Effect of Lime Modification. Developments in the Built Environment, 18, Article 100477. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, Y., Ji, X., Cui, Z., Ye, Y., He, S., Zhou, H., et al. (2024) Investigation on Engineering Characteristics of Lime-Stabilized Phosphogypsum Subgrade Filler. Journal of Materials in Civil Engineering, 36, Article 04024028. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, M., Mei, Y., Li, Y. and Xia, J. (2024) Research on the Technology and Mechanism of Direct Acidification of Phosphogypsum and Deeply Solidify Impurities with Lime. Journal of Environmental Chemical Engineering, 12, Article 114937. [Google Scholar] [CrossRef]
|
|
[21]
|
Li, B., Shu, J.H., Chen, M.J., et al, (2023) A New Basic Burning Raw Material for Simultaneous Stabilization/Solidification of PO43-P and F in Phosphogypsum. Ecotoxicology and Environmental Safety, 252, Article 114582. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
李丹丹, 程寅, 李德高, 等. 大掺量磷石膏路基填料的性能研究与工程应用[J]. 新型建筑材料, 2024, 51(11): 55-61.
|
|
[23]
|
Huang, S.Y., Liu, W.H., Li, W.G., et al. (2024) Study on Water Resistance of Phosphogypsum Solidified by Magnesium Oxychloride Cement (MOC) and NaHCO3. Construction and Building Materials, 451, Article 138877. [Google Scholar] [CrossRef]
|
|
[24]
|
Shen, W.G., Zhou, M.K., Ma, W., et al. (2009) Investigation on the Application of Steel Slag-Fly Ash-Phosphogypsum Solidified Material as Road Base Material. Journal of Hazardous Materials, 164, 99-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, F.Y., Chen, L.L., Lin, Z.W., et al. (2022) Microstructure and Key Properties of Phosphogypsum-Red Mud-Slag Composite Cementitious Materials. Materials, 15, Article 6096. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, F.H., Jin, C.Y., Qu, G.F., et al. (2022) Enhancement of Phosphogypsum Mechanical Block with the Addition of Iron and Aluminum Salts. Journal of Building Engineering, 52, Article 104397. [Google Scholar] [CrossRef]
|
|
[27]
|
Chen, Q.S., Zhang, Q., Wangy, M., et al. (2022) Highly-Efficient Fluoride Retention in On-Site Solidification/Stabilization of Phosphogypsum: Cemented Paste Backfill Synergizes with Poly-Aluminum Chloride Activation. Chemosphere, 309, Article 136652.
|
|
[28]
|
郭逢治, 薛中群. 关于防止室温固化不饱和聚酯树脂表面发粘的探讨[J]. 热固性树脂, 1995(2): 42-46.
|
|
[29]
|
Tabatabai, H., Janbaz, M. and Nabizadeh, A. (2018) Mechanical and Thermo-Gravimetric Properties of Unsaturated Polyester Resin Blended with FGD Gypsum. Construction and Building Materials, 163, 438-445. [Google Scholar] [CrossRef]
|
|
[30]
|
邹萌, 何兆益, 唐亮, 等. 不饱和聚酯树脂固化磷石膏强度形成机制及微观特性研究[J]. 应用化工, 2024, 53(9): 2109-2113+2117.
|
|
[31]
|
Nguyen, S.A., Dong, T.Q., Doan, M.Q., et al. (2023) Boosting the Ultraviolet Shielding and Thermal Retardancy Properties of Unsaturated Polyester Resin by Employing Electrochemically Exfoliated E-Go Nanosheets. RSC Advances, 13, 25762-25777. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
陶果, 曾琪, 陈自然, 等. 环氧树脂固化剂研究现状与发展趋势[J]. 广东化工, 2012, 39(16): 100-101.
|
|
[33]
|
An, H.F., Wang, L.L., Lv, F.T., et al. (2023) Multi-Objective Optimization of Properties on Polymer Fiber-Reinforced Desulfurization Gypsum-Based Composite Cementitious Materials. Construction and Building Materials, 369, Article 130590. [Google Scholar] [CrossRef]
|
|
[34]
|
Kowalska, E., Wielgosz, Z., Zubrowska, M., Pasynkiewicz, S. and Choros, M. (2004) Application of Waste Phosphogypsum in Thermoplastic and Chemosetting Composites. Polimery, 49, 828-836. [Google Scholar] [CrossRef]
|
|
[35]
|
何晓琴, 杨帆, 陈聪地, 等. 环氧树脂固化剂在免烧磷石膏砖中的应用探索[J]. 广州化工, 2022, 50(5): 44-47.
|
|
[36]
|
Manzur, T., Iffat, S. and Noor, M.A. (2015) Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition. Advances in Materials Science and Engineering, 2015, 1-8. [Google Scholar] [CrossRef]
|
|
[37]
|
Min, C.D., Liu, Z.X., Shi, Y., et al. (2023) Improving the Strength Performance of Cemented Phosphogypsum Backfill with Sulfate-Resistant Binders. Construction and Building Materials, 409, Article 133974. [Google Scholar] [CrossRef]
|
|
[38]
|
Mardani-Aghabaglou, A., Boyacı, O.C., Hosseinnezhad, H., Felekoğlu, B. and Ramyar, K. (2016) Effect of Gypsum Type on Properties of Cementitious Materials Containing High Range Water Reducing Admixture. Cement and Concrete Composites, 68, 15-26. [Google Scholar] [CrossRef]
|
|
[39]
|
Zhou, Z.B., Liu, J.O., Luo, K., et al. (2021) Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum. Journal of Renewable Materials, 10, 373-384. [Google Scholar] [CrossRef]
|
|
[40]
|
赵明星, 吴建辉, 龙宝林, 等. 有机无机复合固化剂稳定磷石膏路基填料的性能研究[J]. 新型建筑材料, 2024, 51(12): 101-107.
|
|
[41]
|
Zhou, W., Ye, Q., Shi, S.Q., Fang, Z., Gao, Q. and Li, J. (2021) A Strong Magnesium Oxychloride Cement Wood Adhesive via Organic-Inorganic Hybrid. Construction and Building Materials, 297, Article 123776. [Google Scholar] [CrossRef]
|
|
[42]
|
Ren, H., Liu, W. and Zhang, D. (2021) Application of Phosphogypsum to Solidification of Silty Soil: Mechanical Properties and Microstructure. Mechanics of Advanced Materials and Structures, 29, 6026-6038. [Google Scholar] [CrossRef]
|