压力控制容量保证通气联合手法肺复张对妇科腹腔镜手术患者肺功能的相关研究进展
Research Progress on the Effects of Pressure-Controlled Ventilation-Volume Guaranteed Combined with Recruitment Maneuvers on Pulmonary Function in Patients Undergoing Gynecologic Laparoscopic Surgery
摘要: 妇科腹腔镜手术中气腹与头低脚高位(Trendelenburg体位)易导致肺不张和呼吸力学恶化,影响患者肺功能及术后恢复。压力控制容量保证通气(PCV-VG)和手法肺复张(RM)作为潜在的肺保护策略,其联合应用的价值日益受到关注。本文综述了PCV-VG与RM的作用机制、在妇科腹腔镜手术中对肺功能的影响(如氧合改善、肺复张效果、并发症减少)、当前存在的争议与问题(如临床效果差异、RM获益不确定性、个体化PEEP设定挑战),以及未来的研究方向(如个体化策略优化、生理机制深入、长期结局评估)。
Abstract: Pneumoperitoneum and the Trendelenburg position during gynecologic laparoscopic surgery predispose patients to atelectasis and deterioration of respiratory mechanics, adversely affecting pulmonary function and postoperative recovery. As potential lung-protective strategies, pressure-controlled ventilation-volume guaranteed (PCV-VG) and recruitment maneuvers (RM) have garnered increasing attention for their combined application. This review synthesizes current knowledge on the mechanisms of PCV-VG and RM, their impacts on pulmonary function in gynecologic laparoscopic surgery (e.g., improved oxygenation, enhanced lung recruitment, reduced complications), existing controversies and challenges (e.g., inconsistent clinical efficacy, uncertain benefits of RM, difficulties in individualized PEEP titration), and future research directions (e.g., optimization of personalized strategies, in-depth physiological mechanisms, long-term outcome evaluation).
文章引用:焦鑫鑫, 宋凯阳, 郭润, 白延斌. 压力控制容量保证通气联合手法肺复张对妇科腹腔镜手术患者肺功能的相关研究进展[J]. 临床医学进展, 2025, 15(9): 1469-1476. https://doi.org/10.12677/acm.2025.1592646

1. 引言:背景及临床需求

妇科腹腔镜手术已广泛应用于子宫肌瘤剔除、全子宫切除、附件手术及恶性肿瘤分期等。其优势包括手术视野佳、切口小、疼痛轻、住院时间短及恢复快。然而,妇科腹腔镜手术中气腹与头低脚高位(Trendelenburg体位)会导致膈肌上抬、功能残气量(FRC)减少及肺不张发生率高达90% [1]。在腹腔镜手术中,气腹压力进一步增加腹内压,导致膈肌上抬、胸腔压力改变,从而加重肺通气血流比例失调,促进肺泡塌陷[2]。传统机械通气策略往往难以应对这些特殊挑战,促使研究者探索更优化的通气模式。传统的容量控制通气(VCV)虽能保证潮气量,但可能导致气道峰压升高,增加肺损伤风险;而单纯压力控制通气(PCV)虽降低气道压力,却无法保证稳定的潮气量输出[3] [4]

压力控制容量保证通气(PCV-VG)是一种结合了压力控制和容量保证特性的混合通气模式。该模式通过维持预设的潮气量(通过调整吸气压力)来保证通气稳定性,同时限制气道峰压以减少气压伤风险[4] [5]。同时,手法肺复张(RM)通过短暂施加较高气道压力促使萎陷肺泡重新开放,已被证实能改善氧合和呼吸力学指标[6]。然而,关于PCV-VG联合RM在妇科腹腔镜手术中的系统评价仍较为缺乏。

因此,通过整合最新临床证据,为优化该人群的围手术期呼吸管理提供理论依据和实践指导。

2. PCV-VG与RM的作用机制与技术要点

2.1. 压力控制容量保证通气(PCV-VG)

2.1.1. 模式工作机制

PCV-VG是一种闭环反馈通气模式,通过持续监测呼吸系统力学自动调整吸气压力,在保证预设潮气量(VT)的同时将气道峰压(Ppeak)控制在最低水平[4]

其核心技术特点包括:(1) 以压力控制通气为基础波形;(2) 通过自动调节吸气压力实现容量保证;(3) 连续监测顺应性变化并实时调整。与单纯PCV相比,PCV-VG能避免因胸肺顺应性突然下降导致的通气不足;与VCV相比,则能降低Ppeak和平台压(Pplat),减少气压损伤风险[6]

2.1.2. 在妇科手术中的优势

PCV-VG模式结合了压力控制和容量保证的特点,在妇科腹腔镜手术中表现出更优的呼吸力学参数。与单纯容量控制通气(VCV)相比,PCV-VG可降低气道峰压(PIP),同时维持稳定的潮气量输送,从而减少气压损伤风险[3] [5]

在肥胖患者(BMI ≥ 30 kg/m2)的腹腔镜手术中,PCV-VG通过动态调整压力支持,能够适应气腹和头低脚高位(Trendelenburg体位)导致的呼吸系统顺应性变化,改善肺泡通气[7]

现有证据显示,PCV-VG在多项结局指标上优于传统通气模式。一项针对腹部手术患者的RCT (n = 320)发现,PCV-VG组术后氧合指数(PaO2/FiO2)显著高于VCV组(325 ± 45 vs 285 ± 52 mmHg, p = 0.003),且肺部并发症发生率更低(15.2% vs 22.1%, p = 0.04) [4]。在直接比较PCV-VG与PCV的研究中,前者表现出更稳定的VT输送和更低的呼吸功(WOB),尤其在胸肺顺应性不稳定的情况下[8]

2.2. 手法肺复张的生理学基础

2.2.1. 肺泡复张机制

手法肺复张(RM)是指通过短暂施加高于常规的气道压力(通常35~40 cmH2O持续30~40秒),使萎陷肺泡重新开放并恢复功能残气量的操作[9]。其生理效应主要通过三个途径实现:(1) 克服肺泡临界开放压(约20~25 cmH2O)直接打开萎陷区域;(2) 通过“复张–锚定”机制防止呼气末再次萎陷;(3) 改善肺内气体分布均一性。研究表明,有效的RM可使肺不张面积减少50%~70%,效果可持续2~4小时[9]

2.2.2. 实施方法比较

妇科腹腔镜手术中常用的RM技术包括:(1) 持续气道正压法(CPAP):维持40 cmH2O压力30~40秒;(2) 渐进式PEEP递增法:每6~8次呼吸增加5 cmH2O直至目标压力;(3)压力控制法:设置驱动压15 cmH2O进行PCV通气2分钟[10]。然而,考虑到腹腔镜手术中体位改变受限,临床多采用CPAP或渐进式PEEP递增法。最有效的RM策略是采用30 cmH2O的持续气道正压(CPAP)维持30秒,或使用40 cmH2O的吸气末压力进行肺泡复张[11]

2.3. PCV-VG模式联合RM对妇科腹腔镜患者肺功能的影响:证据与效果

2.3.1. 改善氧合功能与肺复张效果

PCV-VG模式通过保证潮气量稳定,同时降低气道峰压,减少气压伤风险。联合RM可显著增加呼气末肺容积(EELV),尤其是依赖区(背侧)肺区域的通气分布,从而改善术中氧合[4]

研究显示,俯卧位RM较仰卧位RM更能提升背侧肺区的潮气量和EELV (分别增加363 a.u.和724 a.u.) [4],提示体位优化可进一步增强联合策略的效果。

2.3.2. 个体化通气与肺保护

PCV-VG结合RM可实现个体化PEEP设置,通过招募–膨胀比(R/I)评估肺可复张性,避免过度或不足的通气支持[12] [13]。例如,驱动压引导的PEEP策略可降低术后肺部并发症(PPCs)风险[14]

一项Meta分析表明,高PEEP联合RM的低潮气量通气策略显著减少术中低氧血症事件(OR = 0.34),但需警惕低血压风险(OR = 1.87) [15]

2.3.3. 减少术后肺不张与并发症

联合策略通过周期性肺泡复张和维持适当PEEP (如8 cmH2O),有效减少术后肺不张。研究显示,VCV + 高PEEP + RM较VCV + 低PEEP + RM策略更显著降低肺不张风险(RR = 0.56) [16]

在肥胖患者中,RM逆转肺不张的效果明确,使肥胖患者术后肺不张减少37% (p = 0.02),但需注意其对围术期肺功能的临床获益仍需更多证据支持[17]

2.3.4. 技术互补与操作优化

PCV-VG通过自动调节压力维持目标潮气量,减少人工干预;RM则通过短暂高压开放塌陷肺泡,二者结合可优化通气分布[4]

AI辅助的肺分割技术(如Lung-AI)可提高4DCT通气成像的准确性[18],辅助评估RM后的肺功能变化[19]

2.3.5. 潜在局限与平衡

需警惕RM可能导致的血流动力学波动(如低血压) [15],以及高PEEP对胸腔镜手术中单肺通气的特殊影响[6]

建议术中联合电阻抗断层扫描(EIT)或驱动压监测,实时评估肺复张效果[14] [19]

综上,PCV-VG与RM的联合应用通过个体化肺保护、改善氧合及减少并发症,展现了协同优势,但需根据患者可复张性和术中监测数据动态调整策略[12] [16]

3. PCV-VG联合RM在妇科腹腔镜手术中存在的问题与争议

3.1. 临床效果争议

3.1.1. 与传统通气模式无显著差异

多项研究表明,PCV-VG与VCV (容量控制通气)或PCV (压力控制通气)在术后肺部并发症(PPCs)发生率、氧合指数(PaO2/FiO2)等方面未显示出统计学差异。例如,一项纳入1349例腹部手术患者的试验显示,三组(VCV, PCV, PCV-VG)的PPCs发生率均为22%左右(P = 0.865) [4]。类似地,另一项研究指出,PCV-VG联合RM的氧合改善效果并未显著优于其他模式[6]

3.1.2. RM的获益不确定性

虽然RM可改善术中氧合和呼气末肺容积,但其对PPCs的长期影响存在争议。部分研究认为RM联合个体化PEEP (如VCV + PEEPind + RM)效果更优[3],但亦有证据显示RM可能增加肺应力(stress) [20],且其效果受PEEP水平影响(如高PEEP + RM优于低PEEP + RM) [6]

3.2. 技术实施问题

3.2.1. 个体化PEEP的挑战

PCV-VG联合RM需依赖个体化PEEP滴定以优化呼吸系统顺应性[21],但实际操作中,PEEP水平的设定(如固定PEEP vs. 驱动压引导PEEP)存在争议。例如,一项研究发现驱动压引导PEEP可降低PPCs风险[22],而另一项试验显示固定PEEP (5 cmH2O)与个体化PEEP的PPCs发生率无差异。

3.2.2. 气腹与体位的影响

妇科腹腔镜手术中,气腹和头低脚高位(Trendelenburg体位)会加重肺不张和呼吸力学恶化[23] [24]。尽管PCV-VG理论上可通过限制气道峰压改善通气分布[3],但气腹导致的肺应变(strain)增加可能抵消其益处[20],且RM在此情境下的安全性需进一步验证[25]

3.3. 机制与证据局限性

3.3.1. 肺保护策略的混杂因素

现有研究多采用复合肺保护策略(如低潮气量 + PEEP + RM),难以单独评估PCV-VG的作用[26]。例如,一项meta分析指出低潮气量和驱动压引导PEEP是减少PPCs的关键因素,而非通气模式本身[22]

3.3.2. 缺乏妇科手术特异性数据

多数研究聚焦于腹部或机器人手术[3] [14],妇科腹腔镜手术的独特生理变化(如盆腔操作对膈肌活动的影响)未被充分探讨[24]。此外,不同RM方案(如压力、持续时间)的标准化不足[27] [21],导致结果可比性差。

3.4. 潜在风险与未解问题

3.4.1. 血流动力学影响

高PEEP和RM可能减少静脉回流,尤其在气腹状态下[20] [23],但文献未明确报道PCV-VG在此方面的优势或风险。

3.4.2. 长期结局数据缺失

现有研究主要关注术后7~30天的并发症[21],缺乏对长期肺功能影响的评估[28]。此外,PCV-VG在特殊人群(如肥胖患者)中的适用性尚不明确[23] [24]

综上所述,PCV-VG联合RM的理论优势(如改善通气均一性、降低气道压)尚未转化为显著的临床获益,且其效果可能被其他肺保护措施(如低潮气量、个体化PEEP)掩盖[22]。未来研究需针对妇科腹腔镜手术的特点,设计更严格的对照试验,明确RM的最佳实施参数及PCV-VG的差异化适应症[3] [24]

4. PCV-VG联合RM在妇科腹腔镜手术中的未来研究方向

4.1. 个体化PEEP与RM的协同效应

现有证据表明,个体化PEEP联合RM (如VCV + PEEPind + RM)在改善氧合(PaO2/FiO2)方面显著优于固定PEEP策略[16]。未来研究需探索如何将PCV-VG模式与个体化PEEP滴定(如基于驱动压或呼吸系统顺应性)及RM结合,以优化术中肺保护效果[21] [29]。例如,通过R/I (招募–膨胀比)评估患者肺可复张性,指导个体化PEEP设置[13] [30]

4.2. PCV-VG与RM的生理学机制

PCV-VG结合RM可能通过降低气道峰压、改善通气分布(尤其是依赖区肺组织)来减少肺损伤[3] [31]。需进一步研究其对动态肺应变(dynamic strain)和潮气量再分布的影响[32] [33],以及是否优于VCV + RM或PCV + RM组合[16]

4.3. 对术后肺部并发症(PPCs)的影响

当前数据未显示PCV-VG在降低PPCs发生率上显著优于VCV或PCV[4],但RM联合高PEEP可减少术后肺不张。未来需大样本RCT验证PCV-VG + RM对PPCs (如肺炎、呼吸衰竭)的长期影响[21] [34],并明确其与气腹时间、头低体位等因素的交互作用[35]

4.4. 技术优化与实时监测

开发术中实时监测工具(如电阻抗断层成像)以评估RM效果,并动态调整PCV-VG参数(如潮气量保证水平) [36] [31]。此外,需标准化RM操作流程(如压力水平、持续时间),避免血流动力学波动[13]

5. 总结与展望

PCV-VG联合RM在妇科腹腔镜手术中的应用潜力体现以下几个方面:第一,肺保护优势,通过压力控制降低气压伤风险,同时容量保证避免通气不足,结合RM改善氧合和肺复张[3] [31]。第二,个体化趋势,未来需整合驱动压指导的PEEP、可复张性评估及RM,形成精准化通气方案[21] [29]。第三,临床转化挑战,当前证据多来自混合手术人群,需妇科腹腔镜专属研究验证其效益[24] [35],并解决术中监测技术普及性问题[13] [30]

综上,PCV-VG + RM可能成为妇科腹腔镜手术肺保护策略的重要组成部分,但需更多高质量研究明确其优化路径和临床价值。

NOTES

*通讯作者。

参考文献

[1] Tharp, W.G., Murphy, S., Breidenstein, M.W., Love, C., Booms, A., Rafferty, M.N., et al. (2020) Body Habitus and Dynamic Surgical Conditions Independently Impair Pulmonary Mechanics during Robotic-Assisted Laparoscopic Surgery. Anesthesiology, 133, 750-763.
https://doi.org/10.1097/aln.0000000000003442
[2] Lagier, D., Zeng, C., Fernandez-Bustamante, A. and Vidal Melo, M.F. (2022) Perioperative Pulmonary Atelectasis: Part II. Clinical Implications. Anesthesiology, 136, 206-236.
https://doi.org/10.1097/aln.0000000000004009
[3] Chiumello, D., Coppola, S., Fratti, I., Leone, M. and Pastene, B. (2023) Ventilation Strategy during Urological and Gynaecological Robotic-Assisted Surgery: A Narrative Review. British Journal of Anaesthesia, 131, 764-774.
https://doi.org/10.1016/j.bja.2023.06.066
[4] Li, X., Xu, Y., Wang, Z., Wang, W., Luo, Q., Yi, Q., et al. (2024) Effect of Ventilation Mode on Postoperative Pulmonary Complications among Intermediate-to High-Risk Patients Undergoing Abdominal Surgery: A Randomized Controlled Trial. Anaesthesia Critical Care & Pain Medicine, 43, Article 101423.
https://doi.org/10.1016/j.accpm.2024.101423
[5] Li, X.‐F., Jin, L., Yang, J.‐M., Luo, Q.‐S., Liu, H.‐M. and Yu, H. (2022) Effect of Ventilation Mode on Postoperative Pulmonary Complications Following Lung Resection Surgery: A Randomised Controlled Trial. Anaesthesia, 77, 1219-1227.
https://doi.org/10.1111/anae.15848
[6] Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., Möller, K., et al. (2022) Over-Distension Prediction via Hysteresis Loop Analysis and Patient-Specific Basis Functions in a Virtual Patient Model. Computers in Biology and Medicine, 141, Article 105022.
https://doi.org/10.1016/j.compbiomed.2021.105022
[7] Scaramuzzo, G., Priani, P., Ferrara, P., Verri, M., Montanaro, F., La Rosa, R., et al. (2025) Longitudinal Changes of Electrical Impedance Tomography-Based Best PEEP in Obese Patients Undergoing Laparoscopic Surgery: A Prospective Physiological Study. Anaesthesia Critical Care & Pain Medicine, 44, Article 101569.
https://doi.org/10.1016/j.accpm.2025.101569
[8] Spraider, P., Martini, J., Abram, J., Putzer, G., Glodny, B., Hell, T., et al. (2020) Individualized Flow-Controlled Ventilation Compared to Best Clinical Practice Pressure-Controlled Ventilation: A Prospective Randomized Porcine Study. Critical Care, 24, Article No. 662.
https://doi.org/10.1186/s13054-020-03325-3
[9] Turbil, E., Terzi, N., Cour, M., Argaud, L., Einav, S. and Guérin, C. (2020) Positive End-Expiratory Pressure-Induced Recruited Lung Volume Measured by Volume-Pressure Curves in Acute Respiratory Distress Syndrome: A Physiologic Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 2212-2225.
https://doi.org/10.1007/s00134-020-06226-9
[10] Zerbib, Y., Lambour, A., Maizel, J., Kontar, L., De Cagny, B., Soupison, T., et al. (2022) Respiratory Effects of Lung Recruitment Maneuvers Depend on the Recruitment-to-Inflation Ratio in Patients with COVID-19-Related Acute Respiratory Distress Syndrome. Critical Care, 26, Article No. 12.
https://doi.org/10.1186/s13054-021-03876-z
[11] Bae, Y.K., Nam, S.W., Oh, A., Kim, B.Y., Koo, B., Han, J., et al. (2024) Effect of the Alveolar Recruitment Maneuver during Laparoscopic Colorectal Surgery on Postoperative Pulmonary Complications: A Randomized Controlled Trial. PLOS ONE, 19, e0302884.
https://doi.org/10.1371/journal.pone.0302884
[12] Nakayama, R., Bunya, N., Katayama, S., Goto, Y., Iwamoto, Y., Wada, K., et al. (2022) Correlation between the Hysteresis of the Pressure-Volume Curve and the Recruitment-to-Inflation Ratio in Patients with Coronavirus Disease 2019. Annals of Intensive Care, 12, Article No. 106.
https://doi.org/10.1186/s13613-022-01081-x
[13] Rosà, T., Menga, L.S., Mastropietro, C., Settanni, D., Russo, A., Frassanito, L., et al. (2025) Evaluation of the Potential for Lung Recruitment with the Recruitment-to-Inflation Ratio during General Anesthesia. Anesthesiology.
https://doi.org/10.1097/aln.0000000000005677
[14] Kim, Y.J., Kim, B.R., Kim, H.W., Jung, J., Cho, H., Seo, J., et al. (2023) Effect of Driving Pressure-Guided Positive End-Expiratory Pressure on Postoperative Pulmonary Complications in Patients Undergoing Laparoscopic or Robotic Surgery: A Randomised Controlled Trial. British Journal of Anaesthesia, 131, 955-965.
https://doi.org/10.1016/j.bja.2023.08.007
[15] PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes, S.N., Gama de Abreu, M., Pelosi, P. and Schultz, M.J. (2014) High versus Low Positive End-Expiratory Pressure during General Anaesthesia for Open Abdominal Surgery (PROVHILO Trial): A Multicentre Randomised Controlled Trial. Lancet, 384, 495-503.
[16] Wang, J., Zeng, J., Zhang, C., Zheng, W., Huang, X., Zhao, N., et al. (2022) Optimized Ventilation Strategy for Surgery on Patients with Obesity from the Perspective of Lung Protection: A Network Meta-Analysis. Frontiers in Immunology, 13, Article ID: 1032783.
https://doi.org/10.3389/fimmu.2022.1032783
[17] Severac, M., Chiali, W., Severac, F., Perus, O., Orban, J., Iannelli, A., et al. (2021) Alveolar Recruitment Manoeuvre Results in Improved Pulmonary Function in Obese Patients Undergoing Bariatric Surgery: A Randomised Trial. Anaesthesia Critical Care & Pain Medicine, 40, Article 100775.
https://doi.org/10.1016/j.accpm.2020.09.011
[18] Chen, Y., Pahlavian, S.H., Jacobs, P., Neupane, T., Forghani-Arani, F., Castillo, E., et al. (2024) Systematic Evaluation of the Impact of Lung Segmentation Methods on 4-Dimensional Computed Tomography Ventilation Imaging Using a Large Patient Database. International Journal of Radiation Oncology Biology Physics, 118, 242-252.
https://doi.org/10.1016/j.ijrobp.2023.08.017
[19] Taenaka, H., Yoshida, T., Hashimoto, H., Firstiogusran, A.M.F., Ishigaki, S., Iwata, H., et al. (2023) Personalized Ventilatory Strategy Based on Lung Recruitablity in COVID-19-Associated Acute Respiratory Distress Syndrome: A Prospective Clinical Study. Critical Care, 27, Article No. 152.
https://doi.org/10.1186/s13054-023-04360-6
[20] Acosta, C.M., Poliotto, S., Abrego, D., Bradley, D., de Esteban, S., Mir, F., et al. (2024) Effect of an Individualized Lung Protective Ventilation on Lung Strain and Stress in Children Undergoing Laparoscopy: An Observational Cohort Study. Anesthesiology, 140, 430-441.
https://doi.org/10.1097/aln.0000000000004856
[21] Ferrando, C., Carramiñana, A., Piñeiro, P., Mirabella, L., Spadaro, S., Librero, J., et al. (2024) Individualised, Perioperative Open-Lung Ventilation Strategy during One-Lung Ventilation (IPROVE-OLV): A Multicentre, Randomised, Controlled Clinical Trial. The Lancet Respiratory Medicine, 12, 195-206.
https://doi.org/10.1016/s2213-2600(23)00346-6
[22] Buonanno, P., Marra, A., Iacovazzo, C., Vargas, M., Coviello, A., Squillacioti, F., et al. (2023) Impact of Ventilation Strategies on Pulmonary and Cardiovascular Complications in Patients Undergoing General Anaesthesia for Elective Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 131, 1093-1101.
https://doi.org/10.1016/j.bja.2023.09.011
[23] Boesing, C., Schaefer, L., Hammel, M., Otto, M., Blank, S., Pelosi, P., et al. (2023) Individualized Positive End-Expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study. Anesthesiology, 139, 249-261.
https://doi.org/10.1097/aln.0000000000004631
[24] Sjoding, M.W., Gong, M.N., Haas, C.F. and Iwashyna, T.J. (2019) Evaluating Delivery of Low Tidal Volume Ventilation in Six ICUS Using Electronic Health Record Data. Critical Care Medicine, 47, 56-61.
https://doi.org/10.1097/ccm.0000000000003469
[25] Campos, N.S., Bluth, T., Hemmes, S.N.T., Librero, J., Pozo, N., Ferrando, C., Ball, L., Mazzinari, G., Pelosi, P., et al. (2022) Intraoperative Positive End-Expiratory Pressure and Postoperative Pulmonary Complications: A Patient-Level Meta-Analysis of Three Randomised Clinical Trials. British Journal of Anaesthesia, 128, 1040-1051.
[26] Pensier, J., Guerrero, M.A., Berger-Estilita, J., Borgstedt, L., Zaher, A.M.S., Jaber, S., et al. (2025) Perioperative Ventilation Support, What Clinicians and Searchers Must Know. Anaesthesia Critical Care & Pain Medicine, 44, Article 101554.
https://doi.org/10.1016/j.accpm.2025.101554
[27] Tingay, D.G., Fatmous, M., Kenna, K., Dowse, G., Douglas, E., Sett, A., et al. (2023) Inflating Pressure and Not Expiratory Pressure Initiates Lung Injury at Birth in Preterm Lambs. American Journal of Respiratory and Critical Care Medicine, 208, 589-599.
https://doi.org/10.1164/rccm.202301-0104oc
[28] Turan, A., Esa, W.A.S., Rivas, E., Wang, J., Bakal, O., Stamper, S., et al. (2022) Tidal Volume and Positive End-Expiratory Pressure and Postoperative Hypoxemia during General Anesthesia: A Single-Center Multiple Crossover Factorial Cluster Trial. Anesthesiology, 137, 406-417.
https://doi.org/10.1097/aln.0000000000004342
[29] Zorrilla-Vaca, A., Grant, M.C., Urman, R.D. and Frendl, G. (2022) Individualised Positive End-Expiratory Pressure in Abdominal Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 129, 815-825.
https://doi.org/10.1016/j.bja.2022.07.009
[30] Grieco, D.L., Pintaudi, G., Bongiovanni, F., Anzellotti, G.M., Menga, L.S., Cesarano, M., et al. (2023) Recruitment-to-inflation Ratio Assessed through Sequential End-Expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology, 139, 801-814.
https://doi.org/10.1097/aln.0000000000004716
[31] Zeng, C., Zhu, M., Motta-Ribeiro, G., Lagier, D., Hinoshita, T., Zang, M., et al. (2023) Dynamic Lung Aeration and Strain with Positive End-Expiratory Pressure Individualized to Maximal Compliance versus ARDSNet Low-Stretch Strategy: A Study in a Surfactant Depletion Model of Lung Injury. Critical Care, 27, Article No. 307.
https://doi.org/10.1186/s13054-023-04591-7
[32] Murgolo, F., Grieco, D.L., Spadaro, S., Bartolomeo, N., di Mussi, R., Pisani, L., et al. (2024) Recruitment-to-Inflation Ratio Reflects the Impact of Peep on Dynamic Lung Strain in a Highly Recruitable Model of Ards. Annals of Intensive Care, 14, Article No. 106.
https://doi.org/10.1186/s13613-024-01343-w
[33] Bello, G., Giammatteo, V., Bisanti, A., Delle Cese, L., Rosà, T., Menga, L.S., et al. (2024) High vs Low PEEP in Patients with ARDS Exhibiting Intense Inspiratory Effort during Assisted Ventilation: A Randomized Crossover Trial. CHEST, 165, 1392-1405.
https://doi.org/10.1016/j.chest.2024.01.040
[34] Mazzinari, G., Zampieri, F.G., Ball, L., Campos, N.S., Bluth, T., Hemmes, S.N.T., et al. (2025) High Positive End-Expiratory Pressure (PEEP) with Recruitment Maneuvers versus Low PEEP during General Anesthesia for Surgery: A Bayesian Individual Patient Data Meta-Analysis of Three Randomized Clinical Trials. Anesthesiology, 142, 72-97.
https://doi.org/10.1097/aln.0000000000005170
[35] Gao, L., Zhang, B., Qi, J., Zhao, X., Yan, X., Li, B., et al. (2025) Effects of Individualized Positive End-Expiratory Pressure on Intraoperative Oxygenation and Postoperative Pulmonary Complications in Patients Requiring Pneumoperitoneum with Trendelenburg Position: A Systematic Review and Meta-Analysis. International Journal of Surgery, 111, 1386-1396.
https://doi.org/10.1097/js9.0000000000002041
[36] Giovanazzi, S., Nocera, D., Catozzi, G., Collino, F., Cressoni, M., Ball, L., et al. (2025) Assessment of Recruitment from CT to the Bedside: Challenges and Future Directions. Critical Care, 29, Article No. 64.
https://doi.org/10.1186/s13054-025-05263-4