[1]
|
Tharp, W.G., Murphy, S., Breidenstein, M.W., Love, C., Booms, A., Rafferty, M.N., et al. (2020) Body Habitus and Dynamic Surgical Conditions Independently Impair Pulmonary Mechanics during Robotic-Assisted Laparoscopic Surgery. Anesthesiology, 133, 750-763. https://doi.org/10.1097/aln.0000000000003442
|
[2]
|
Lagier, D., Zeng, C., Fernandez-Bustamante, A. and Vidal Melo, M.F. (2022) Perioperative Pulmonary Atelectasis: Part II. Clinical Implications. Anesthesiology, 136, 206-236. https://doi.org/10.1097/aln.0000000000004009
|
[3]
|
Chiumello, D., Coppola, S., Fratti, I., Leone, M. and Pastene, B. (2023) Ventilation Strategy during Urological and Gynaecological Robotic-Assisted Surgery: A Narrative Review. British Journal of Anaesthesia, 131, 764-774. https://doi.org/10.1016/j.bja.2023.06.066
|
[4]
|
Li, X., Xu, Y., Wang, Z., Wang, W., Luo, Q., Yi, Q., et al. (2024) Effect of Ventilation Mode on Postoperative Pulmonary Complications among Intermediate-to High-Risk Patients Undergoing Abdominal Surgery: A Randomized Controlled Trial. Anaesthesia Critical Care & Pain Medicine, 43, Article 101423. https://doi.org/10.1016/j.accpm.2024.101423
|
[5]
|
Li, X.‐F., Jin, L., Yang, J.‐M., Luo, Q.‐S., Liu, H.‐M. and Yu, H. (2022) Effect of Ventilation Mode on Postoperative Pulmonary Complications Following Lung Resection Surgery: A Randomised Controlled Trial. Anaesthesia, 77, 1219-1227. https://doi.org/10.1111/anae.15848
|
[6]
|
Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., Möller, K., et al. (2022) Over-Distension Prediction via Hysteresis Loop Analysis and Patient-Specific Basis Functions in a Virtual Patient Model. Computers in Biology and Medicine, 141, Article 105022. https://doi.org/10.1016/j.compbiomed.2021.105022
|
[7]
|
Scaramuzzo, G., Priani, P., Ferrara, P., Verri, M., Montanaro, F., La Rosa, R., et al. (2025) Longitudinal Changes of Electrical Impedance Tomography-Based Best PEEP in Obese Patients Undergoing Laparoscopic Surgery: A Prospective Physiological Study. Anaesthesia Critical Care & Pain Medicine, 44, Article 101569. https://doi.org/10.1016/j.accpm.2025.101569
|
[8]
|
Spraider, P., Martini, J., Abram, J., Putzer, G., Glodny, B., Hell, T., et al. (2020) Individualized Flow-Controlled Ventilation Compared to Best Clinical Practice Pressure-Controlled Ventilation: A Prospective Randomized Porcine Study. Critical Care, 24, Article No. 662. https://doi.org/10.1186/s13054-020-03325-3
|
[9]
|
Turbil, E., Terzi, N., Cour, M., Argaud, L., Einav, S. and Guérin, C. (2020) Positive End-Expiratory Pressure-Induced Recruited Lung Volume Measured by Volume-Pressure Curves in Acute Respiratory Distress Syndrome: A Physiologic Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 2212-2225. https://doi.org/10.1007/s00134-020-06226-9
|
[10]
|
Zerbib, Y., Lambour, A., Maizel, J., Kontar, L., De Cagny, B., Soupison, T., et al. (2022) Respiratory Effects of Lung Recruitment Maneuvers Depend on the Recruitment-to-Inflation Ratio in Patients with COVID-19-Related Acute Respiratory Distress Syndrome. Critical Care, 26, Article No. 12. https://doi.org/10.1186/s13054-021-03876-z
|
[11]
|
Bae, Y.K., Nam, S.W., Oh, A., Kim, B.Y., Koo, B., Han, J., et al. (2024) Effect of the Alveolar Recruitment Maneuver during Laparoscopic Colorectal Surgery on Postoperative Pulmonary Complications: A Randomized Controlled Trial. PLOS ONE, 19, e0302884. https://doi.org/10.1371/journal.pone.0302884
|
[12]
|
Nakayama, R., Bunya, N., Katayama, S., Goto, Y., Iwamoto, Y., Wada, K., et al. (2022) Correlation between the Hysteresis of the Pressure-Volume Curve and the Recruitment-to-Inflation Ratio in Patients with Coronavirus Disease 2019. Annals of Intensive Care, 12, Article No. 106. https://doi.org/10.1186/s13613-022-01081-x
|
[13]
|
Rosà, T., Menga, L.S., Mastropietro, C., Settanni, D., Russo, A., Frassanito, L., et al. (2025) Evaluation of the Potential for Lung Recruitment with the Recruitment-to-Inflation Ratio during General Anesthesia. Anesthesiology. https://doi.org/10.1097/aln.0000000000005677
|
[14]
|
Kim, Y.J., Kim, B.R., Kim, H.W., Jung, J., Cho, H., Seo, J., et al. (2023) Effect of Driving Pressure-Guided Positive End-Expiratory Pressure on Postoperative Pulmonary Complications in Patients Undergoing Laparoscopic or Robotic Surgery: A Randomised Controlled Trial. British Journal of Anaesthesia, 131, 955-965. https://doi.org/10.1016/j.bja.2023.08.007
|
[15]
|
PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes, S.N., Gama de Abreu, M., Pelosi, P. and Schultz, M.J. (2014) High versus Low Positive End-Expiratory Pressure during General Anaesthesia for Open Abdominal Surgery (PROVHILO Trial): A Multicentre Randomised Controlled Trial. Lancet, 384, 495-503.
|
[16]
|
Wang, J., Zeng, J., Zhang, C., Zheng, W., Huang, X., Zhao, N., et al. (2022) Optimized Ventilation Strategy for Surgery on Patients with Obesity from the Perspective of Lung Protection: A Network Meta-Analysis. Frontiers in Immunology, 13, Article ID: 1032783. https://doi.org/10.3389/fimmu.2022.1032783
|
[17]
|
Severac, M., Chiali, W., Severac, F., Perus, O., Orban, J., Iannelli, A., et al. (2021) Alveolar Recruitment Manoeuvre Results in Improved Pulmonary Function in Obese Patients Undergoing Bariatric Surgery: A Randomised Trial. Anaesthesia Critical Care & Pain Medicine, 40, Article 100775. https://doi.org/10.1016/j.accpm.2020.09.011
|
[18]
|
Chen, Y., Pahlavian, S.H., Jacobs, P., Neupane, T., Forghani-Arani, F., Castillo, E., et al. (2024) Systematic Evaluation of the Impact of Lung Segmentation Methods on 4-Dimensional Computed Tomography Ventilation Imaging Using a Large Patient Database. International Journal of Radiation Oncology Biology Physics, 118, 242-252. https://doi.org/10.1016/j.ijrobp.2023.08.017
|
[19]
|
Taenaka, H., Yoshida, T., Hashimoto, H., Firstiogusran, A.M.F., Ishigaki, S., Iwata, H., et al. (2023) Personalized Ventilatory Strategy Based on Lung Recruitablity in COVID-19-Associated Acute Respiratory Distress Syndrome: A Prospective Clinical Study. Critical Care, 27, Article No. 152. https://doi.org/10.1186/s13054-023-04360-6
|
[20]
|
Acosta, C.M., Poliotto, S., Abrego, D., Bradley, D., de Esteban, S., Mir, F., et al. (2024) Effect of an Individualized Lung Protective Ventilation on Lung Strain and Stress in Children Undergoing Laparoscopy: An Observational Cohort Study. Anesthesiology, 140, 430-441. https://doi.org/10.1097/aln.0000000000004856
|
[21]
|
Ferrando, C., Carramiñana, A., Piñeiro, P., Mirabella, L., Spadaro, S., Librero, J., et al. (2024) Individualised, Perioperative Open-Lung Ventilation Strategy during One-Lung Ventilation (IPROVE-OLV): A Multicentre, Randomised, Controlled Clinical Trial. The Lancet Respiratory Medicine, 12, 195-206. https://doi.org/10.1016/s2213-2600(23)00346-6
|
[22]
|
Buonanno, P., Marra, A., Iacovazzo, C., Vargas, M., Coviello, A., Squillacioti, F., et al. (2023) Impact of Ventilation Strategies on Pulmonary and Cardiovascular Complications in Patients Undergoing General Anaesthesia for Elective Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 131, 1093-1101. https://doi.org/10.1016/j.bja.2023.09.011
|
[23]
|
Boesing, C., Schaefer, L., Hammel, M., Otto, M., Blank, S., Pelosi, P., et al. (2023) Individualized Positive End-Expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study. Anesthesiology, 139, 249-261. https://doi.org/10.1097/aln.0000000000004631
|
[24]
|
Sjoding, M.W., Gong, M.N., Haas, C.F. and Iwashyna, T.J. (2019) Evaluating Delivery of Low Tidal Volume Ventilation in Six ICUS Using Electronic Health Record Data. Critical Care Medicine, 47, 56-61. https://doi.org/10.1097/ccm.0000000000003469
|
[25]
|
Campos, N.S., Bluth, T., Hemmes, S.N.T., Librero, J., Pozo, N., Ferrando, C., Ball, L., Mazzinari, G., Pelosi, P., et al. (2022) Intraoperative Positive End-Expiratory Pressure and Postoperative Pulmonary Complications: A Patient-Level Meta-Analysis of Three Randomised Clinical Trials. British Journal of Anaesthesia, 128, 1040-1051.
|
[26]
|
Pensier, J., Guerrero, M.A., Berger-Estilita, J., Borgstedt, L., Zaher, A.M.S., Jaber, S., et al. (2025) Perioperative Ventilation Support, What Clinicians and Searchers Must Know. Anaesthesia Critical Care & Pain Medicine, 44, Article 101554. https://doi.org/10.1016/j.accpm.2025.101554
|
[27]
|
Tingay, D.G., Fatmous, M., Kenna, K., Dowse, G., Douglas, E., Sett, A., et al. (2023) Inflating Pressure and Not Expiratory Pressure Initiates Lung Injury at Birth in Preterm Lambs. American Journal of Respiratory and Critical Care Medicine, 208, 589-599. https://doi.org/10.1164/rccm.202301-0104oc
|
[28]
|
Turan, A., Esa, W.A.S., Rivas, E., Wang, J., Bakal, O., Stamper, S., et al. (2022) Tidal Volume and Positive End-Expiratory Pressure and Postoperative Hypoxemia during General Anesthesia: A Single-Center Multiple Crossover Factorial Cluster Trial. Anesthesiology, 137, 406-417. https://doi.org/10.1097/aln.0000000000004342
|
[29]
|
Zorrilla-Vaca, A., Grant, M.C., Urman, R.D. and Frendl, G. (2022) Individualised Positive End-Expiratory Pressure in Abdominal Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 129, 815-825. https://doi.org/10.1016/j.bja.2022.07.009
|
[30]
|
Grieco, D.L., Pintaudi, G., Bongiovanni, F., Anzellotti, G.M., Menga, L.S., Cesarano, M., et al. (2023) Recruitment-to-inflation Ratio Assessed through Sequential End-Expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology, 139, 801-814. https://doi.org/10.1097/aln.0000000000004716
|
[31]
|
Zeng, C., Zhu, M., Motta-Ribeiro, G., Lagier, D., Hinoshita, T., Zang, M., et al. (2023) Dynamic Lung Aeration and Strain with Positive End-Expiratory Pressure Individualized to Maximal Compliance versus ARDSNet Low-Stretch Strategy: A Study in a Surfactant Depletion Model of Lung Injury. Critical Care, 27, Article No. 307. https://doi.org/10.1186/s13054-023-04591-7
|
[32]
|
Murgolo, F., Grieco, D.L., Spadaro, S., Bartolomeo, N., di Mussi, R., Pisani, L., et al. (2024) Recruitment-to-Inflation Ratio Reflects the Impact of Peep on Dynamic Lung Strain in a Highly Recruitable Model of Ards. Annals of Intensive Care, 14, Article No. 106. https://doi.org/10.1186/s13613-024-01343-w
|
[33]
|
Bello, G., Giammatteo, V., Bisanti, A., Delle Cese, L., Rosà, T., Menga, L.S., et al. (2024) High vs Low PEEP in Patients with ARDS Exhibiting Intense Inspiratory Effort during Assisted Ventilation: A Randomized Crossover Trial. CHEST, 165, 1392-1405. https://doi.org/10.1016/j.chest.2024.01.040
|
[34]
|
Mazzinari, G., Zampieri, F.G., Ball, L., Campos, N.S., Bluth, T., Hemmes, S.N.T., et al. (2025) High Positive End-Expiratory Pressure (PEEP) with Recruitment Maneuvers versus Low PEEP during General Anesthesia for Surgery: A Bayesian Individual Patient Data Meta-Analysis of Three Randomized Clinical Trials. Anesthesiology, 142, 72-97. https://doi.org/10.1097/aln.0000000000005170
|
[35]
|
Gao, L., Zhang, B., Qi, J., Zhao, X., Yan, X., Li, B., et al. (2025) Effects of Individualized Positive End-Expiratory Pressure on Intraoperative Oxygenation and Postoperative Pulmonary Complications in Patients Requiring Pneumoperitoneum with Trendelenburg Position: A Systematic Review and Meta-Analysis. International Journal of Surgery, 111, 1386-1396. https://doi.org/10.1097/js9.0000000000002041
|
[36]
|
Giovanazzi, S., Nocera, D., Catozzi, G., Collino, F., Cressoni, M., Ball, L., et al. (2025) Assessment of Recruitment from CT to the Bedside: Challenges and Future Directions. Critical Care, 29, Article No. 64. https://doi.org/10.1186/s13054-025-05263-4
|