[1]
|
Kwork, Y.K. (2011) Mathematical models of financial derivatives. The World Book Publishing Company, Beijing.
|
[2]
|
姜礼尚 (2008) 期权定价的数学模型和方法(第2版).高等教育出版社, 北京.
|
[3]
|
赵胜民 (2008) 衍生金融工具定价.中国财政经济出版社, 北京.
|
[4]
|
Ballester, C., Company, R. and Jodar, L. (2008) An efficient method for option pricing with discrete dividend payment. Computers and Mathe- matics with Applications, 56, 822-835.
|
[5]
|
Company, R., Navarro, E., Pintos, J.R. et al. (2008) Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Com- puters and Mathematics with Applications, 56, 813-821.
|
[6]
|
Yang, X.Z., Liu, Y.G. and Wang, G.H. (2007) A study on a new kind of universal difference schemes for solving Black-Scholes equation. International Journal of Information and Systems Sciences, 3, 251-260.
|
[7]
|
唐耀宗, 金朝嵩 (2006) 有红利美式看跌期权定价的Crank-Nicolson有限差分法. 经济数学, 4, 349-352.
|
[8]
|
吴立飞, 杨晓忠 (2011) 支付红利下Black-Scholes方程的显隐和隐显差分格式解法. 中国科技论文在线精品论文, 13, 1207-1212.
|
[9]
|
Evans, D.J. and Sahimi, M.S. (1989) The numerical solution of Burgers’ equations by the alternating group explicit (AGE) method. Interna- tional Journal of Computer Mathematics, 29, 39-64.
|
[10]
|
张宝琳 等 (1999) 数值并行计算原理与方法. 国防工业出版社, 北京.
|
[11]
|
陆金甫, 张宝琳, 徐涛 (1998) 求解对流-扩散方程的交替分段显–隐式方法. 数值计算与计算机应用, 3, 161-167.
|
[12]
|
王文洽 (2002) 对流–扩散方程的一类交替分组方法. 高等学校计算数学学报, 4, 289-297.
|
[13]
|
张锁春 (2010) 抛物型方程定解问题的有限差分数值计算. 科学出版社, 北京.
|