[1]
|
Sivula, K., Le Formal, F. and Gratzel, M. (2011) Solar water splitting: Progress using hematite α-Fe2O3 photoelectrodes. ChemSusChem, 4, 432-449.
|
[2]
|
Kay, A., Cesar, I. and Grätzel, M. (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. Journal of the American Chemical Society, 128, 15714-15721.
|
[3]
|
Murphy, A., Barnes, P., Randeniya, L., Plumb, I., Grey, I., Horne, M. and Glasscock, J. (2006) Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 31, 1999-2017.
|
[4]
|
Rahman, G. and Joo, O.S. (2013) Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A, 1, 5554-5561.
|
[5]
|
Cha, H. G., Song, J., Kim, H.S., Shin, W., Yoon, K.B. and Kang, Y.S. (2011) Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem Commun (Camb), 47, 2441-2443
|
[6]
|
Kleiman-Shwarsctein, A., Huda, M.N., Walsh, A., Yan, Y., Stucky, G.D., Hu, Y.-S., Al-Jassim, M.M., McFarland, E.W. (2009) Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: Experiment and theory. Chemistry of Materials, 22, 510-517.
|
[7]
|
Ingler Jr., W.B., Baltrus, J.P. and Khan, S.U. (2004) Photoresponse of p-type zinc-doped iron(III) oxide thin films. Journal of the American Chemical Society, 126, 10238-10239
|
[8]
|
Kumari, S., Tripathi, C., Singh, A.P., Chauhan, D., Shrivastav, R., Dass, S. and Satsangi, V.R. (2006) Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water. Current Science, 91, 1062-1064.
|
[9]
|
Kumari, S., Singh, A. P., Tripathi, C., Chauhan, D., Dass, S., Shrivastav, R., Gupta, V., Sreenivas, K. and Satsangi, V.R. (2007) Enhanced photoelectrochemical response of Zn-dotted hematite. International Journal of Photoenergy, 2007, Article ID: 87467.
|
[10]
|
Nikolic, M., Slankamenac, M., Nikolic, N., Sekulic, D., Aleksic, O., Mitric, M., Ivetic, T., Pavlovic, V. and Nikolic, P. (2012) Study of dielectric behavior and electrical properties of hematite α-Fe2O3 doped with Zn. Science of Sintering, 44, 307-321.
|
[11]
|
Qi, X., She, G., Wang, M., Mu, L. and Shi, W. (2013) Electrochemical synthesis of p-type Zn-doped alpha-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chemical Communications (Cambridge, England), 49, 57425744
|
[12]
|
Wen, X., Wang, S., Ding, Y., Wang, Z.L. and Yang, S. (2004) Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. The Journal of Physical Chemistry B, 109, 215-220.
|
[13]
|
Grigorescu, S., Lee, C.Y., Lee, K., Albu, S., Paramasivam, I., Demetrescu, I. and Schmuki, P. (2012) Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochemistry Communications, 23, 59-62.
|
[14]
|
Yu, T., Sow, C., Xu, X., Zhu, Y., Lim, C. T. and Thong, J. (2007) Formation of α-Fe2O3 nanoflakes by heating Fe in air. Solid State Phenomena, 121, 45-48.
|
[15]
|
Vincent, T., Gross, M., Dotan, H. and Rothschild, A. (2012) Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy, 37, 8102-8109.
|
[16]
|
Yuan, L., Cai, R., Jang, J.I., Zhu, W., Wang, C., Wang, Y. and Zhou, G. (2013) Morphological transformation of hematite nanostructures during oxidation of iron. Nanoscale, 5, 7581-7588.
|
[17]
|
蔡丽丽, 郭瑞光, 牛林清, 马建青, 唐长斌, 张建锋 (2011) 氧化剂对钢铁表面氟铁酸盐转化膜的影响. 电镀与涂饰, 30, 31-34.
|
[18]
|
Sekine, I. and Okano, C. (1989) Corrosion behavior of mild steel and ferritic stainless steels in oxalic acid solution. Corrosion, 45, 924-932.
|
[19]
|
Ashrafi, A., Golozar, M. A. and Mallakpour, S. (2007) EIS investigation of passive film formation on mild steel in oxalic acid solution. Journal of Applied Electrochemistry, 38, 225-229.
|
[20]
|
Jia, Z., Ren, D., Liang, Y. and Zhu, R. (2011) A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity. Materials Letters, 65, 3116-3119.
|
[21]
|
Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N. and Yao, K. (2008) Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology, 19, 405503.
|
[22]
|
Wang, M., Ai, Z. and Zhang, L. (2008) Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. The Journal of Physical Chemistry C, 112, 1316313170.
|
[23]
|
Rao, V., Shashimohan, A.L. and Biswas, A.B. (1974) Studies on the formation of γ-Fe2O3 (maghemite) by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 9, 430-433.
|
[24]
|
Boyanov, B., Khadzhiev, D. and Vasilev, V. (1985) Study of thermal decomposition of FeC204•2H20. Thermochimica Acta, 93, 89-92.
|
[25]
|
唐万军, 陈栋华 (2007) 二水草酸亚铁热分解反应动力学. 物理化学学报, 4, 605-608.
|
[26]
|
焦华, 杨合情 (2009) Fe3O4纳米棒和 Fe2O3纳米线的热氧化制备与表征. 中国科学: B , 1, 39-45.
|
[27]
|
McShane, C.M. and Choi, K.S. (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Journal of the American Chemical Society, 131, 2561-2569.
|
[28]
|
Hu, X.D., Zhang, H.Q. and Cao, D.M. (2011). Synthesis of Fe3O4 nanocrystals and application in photocatalytic degradation of levofloxacin lactate. Materials Science Forum, 688, 376-382.
|
[29]
|
Wilhelm, S.M., Yun, K.S., Ballenger, L.W. and Hackerman, N. (1979) Semiconductor properties of iron oxide electrodes. Journal of the Electrochemical Society, 126, 419-424.
|
[30]
|
Cummings, C.Y., Marken, F., Peter, L.M., hir, A.A. and Wijayantha, K.G. (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chemical Communications (Cambridge, England), 48, 2027-2029.
|
[31]
|
Satsangi, V.R. (2007) Metal oxide semiconductors in PEC splitting of water. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6650, 9.
|