[1]
|
Aisenberg, S. and Chabot, R. (1971) Ion-beam deposition of thin films of diamond-like carbon. Journal of Applied Physics, 42, 2953-2958.
|
[2]
|
张碧云, 曲燕青, 谢红梅, 聂朝胤 (2007) 类金刚石膜的制备技术及应用领域概况. 表面技术, 3, 70-73.
|
[3]
|
Weiler, M., Sattel, S. and Giessen, T. (1996) Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Physicals Review B, 53, 1594-1608.
|
[4]
|
Robertson, J. (2002) Diamond-like amorphous carbon. Materials Science and Engineering, 37, 129-281.
|
[5]
|
Jakse, N. and Pasturel, A. (2007) Liq-uid-liquid phase transformation in silicon: Evidence from first-principles molecular dynamics simulations. Physical Review Letters, 99, 2-5.
|
[6]
|
Beeman, D., Silverman, J., McKenzie, R. and Goringe, C.M. (1984) Modeling studies of amorphous carbon. Physicals Review B, 30, 870-875.
|
[7]
|
Robertson, J. and O’ Reillh, E.P. (1987) Electronic and atomic structure of amorphous carbon. Physical Review Letters, 35, 2946-2957.
|
[8]
|
Keating, P.N. (1996) Theory of the third-order elastic constants of diamond-like crystals. Physical Review, 149, 674- 678.
|
[9]
|
Tersoff, J. (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters, 61, 2879-2882.
|
[10]
|
Tersoff, J. (1991) Structural properties of sp3-bonded hydrogenated amorphous carbon. Physicals Review B, 44, 12039-12042.
|
[11]
|
Brenner, D. (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physicals Review B, 42, 9458-9471.
|
[12]
|
Heggie, M.I. (1991) Semiclassical interatomic potential for carbon and its application to the self-interstitial in graphite. Journal of Physics: Condensed Matter, 3, 3065-3079.
|
[13]
|
Kelires, P.C. (1993) Structural properties and energetics of amorphous forms of carbon. Physicals Review B, 47, 1829-1839.
|
[14]
|
Kelires, P.C. (1994) Elastic properties of amorphous carbon networks. Physical Review Letters, 73, 2460-2463.
|
[15]
|
Wang, C.Z., Ho, K.M. and Chan, C.T. (1993) Tight-binding molecular-dynamics study of amorphous carbon. Physical Review Letters, 70, 611-614.
|
[16]
|
Wang, C.Z. and Ho, K.M. (1993) Structure, dynamics, and electronic properties of diamond-like amorphous carbon. Physical Review Letters, 71, 1184-1187.
|
[17]
|
Frauenheim, Th., Blaudeck, P., Stephan, U. and Jungnickel, G. (1993) Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs. Physical Review B, 48, 4823-4834.
|
[18]
|
Jungnickel, G., Frauenheim, Th., Proezag, D., Stephan, U. and Newport, R.J. (1994) Structural properties of amorphous hydrogenated carbon. IV. A molecular-dynamics investigation and comparison to experiments. Physical Review B, 50, 6709-6716.
|
[19]
|
Stephan, U., Frauenheim, Th., Blaudeck, P. and Jungnickel, G. (1994) π-bonding versus electronic defect generation: An examination of band gap properties in amorphous carbon. Physical Review B, 49, 1489-1501.
|
[20]
|
Frauenheim, Th., Jungnickel, G., Stephan, U., Blaudeck, P., Deutschmann, S., Weiler, M., Sattel, S., Jung, K. and Ehrhardt, H. (1994) Atomic-scale structure and electronic properties of highly tetrahedral hydrogenated amorphous carbon. Physical Review B, 50, 7940-7945.
|
[21]
|
Chen, C.W. and Robertson, J. (1998) Nature of disorder and localization in amorphous carbon. Journal of Non-Crys- talline Solids, 227-230, 602-606.
|
[22]
|
Robertson, J. (1999) Relationship between sp2 carbon content and E04 optical gap in amorphous carbon-based materials. B Philosophical Magazine, 75, 3650-3653.
|
[23]
|
Drabold, D.A., Fedders, P.A. and Strumm, P. (1994) Theory of diamondlike amorphous carbon. Physical Review B, 49, 16415-16422.
|
[24]
|
Drabold, D.A., Fedders, P.A. and Grumbach, M. (1996) Gap formation and defect states in tetrahedral amorphous carbon. Physical Review B, 54, 5480-5484.
|
[25]
|
Galli, G., Martin, R.M., Car, R. and Parrinello, M. (1989) Structural and electronic properties of amorphous carbon. Physical Review Letters, 62, 555-558.
|
[26]
|
Galli, G., Martin, R.M., Car, R. and Parrinello, M. (1990) Ab initio calculation of properties of carbon in the amorphous and liquid states. Physical Review B, 42, 7470-7482.
|
[27]
|
Iarlori, S., Galli, G. and Martini, O. (1994) Microscopic structure of hydrogenated amorphous carbon. Physical Review B, 49, 7060-7063.
|
[28]
|
Schultz, P.A. and Stechel, E.B. (1998) Effects of basis set quality on the prediction of structures, energies, and properties of amorphous tetrahedral carbon. Physical Review B, 57, 3295-3304.
|
[29]
|
Schultz, P.A., Leung, K. and Stechel, E.B. (1999) Small rings and amorphous tetrahedral carbon. Physical Review B, 59, 733-741.
|
[30]
|
Jager, H.U. and Belov, A.Y. (2003) ta-C deposition simulations: Film properties and time-resolved dynamics of film formation. Physical Review B, 68, Article ID: 024201.
|
[31]
|
Belov, A.Y. (2003) Atomic scale simulation of structural relaxation processes in tetrahedral amorphous carbon. Computational Materials Science, 27, 30-35.
|
[32]
|
Belov, A.Y. and Jager, H.U. (2005) Formation and evolution of sp2 clusters in amorphous carbon network as predicted by molecular dynamics annealing simulations. Diamond and Related Materials, 14, 1014-1018.
|
[33]
|
Lifshitz, Y. (1999) Diamond-like carbon—present status. Diamond and Related Materials, 8, 1659-1676.
|
[34]
|
Lifshitz, Y., Kasi, S.R. and Rabalais, J.W. (1989) Subplantation model for film growth from hyperthermal species: Application to diamond. Physical Review Letters, 62, 1290.
|
[35]
|
Robertson, J. (1993) Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond and Related Materials, 2, 984-989.
|
[36]
|
Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B. and Sinnott, S.B. (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14, 783-802.
|
[37]
|
马天宝, 胡元中, 王慧 (2006) 基于原子运动模型的类金刚石薄膜生长机理研究. 物理学报, 1, 480-486.
|
[38]
|
Enke, K., Dimigen, H. and Hübsch, H. (1980) Frictional properties of diamondlike carbon layers. Applied Physics Letters, 36, 291-292.
|
[39]
|
王丽莉, 胡文军, 万强, 赵晓平 (2010) 第一原理分子动力学研究类金刚石薄膜的结合强度与摩擦性能. 分子科学学报, 6, 376-380.
|
[40]
|
Mathioudakis, C., Kelires, P.C., Panagiotatos, Y., Patsalas, P., Charitidis, C. and Logothetidis, S. (2002) Nanomechanical properties of multilayered amorphous carbon structures. Physical Review B, 65, Article ID: 205203.
|
[41]
|
Logothetidis, S., Kassavetis, S., Charitidis, C., Panayiotatos, Y. and Laskarakis, A. (2004) Nanoindentation studies of multilayer amorphous carbon films. Carbon, 42, 1133-1136.
|
[42]
|
Zhao, J.P., Chen, Z.Y., Wang, X. and Shi, T.S. (2000) Electron field emission from tetrahedral amorphous carbon films with multilayer structure. Journal of Applied Physics, 87, 8098-8102.
|
[43]
|
Halac, E.B., Burgos, E. and Reinoso, M. (2008) Amorphous carbon multilayered films studied by molecular dynamics simulations. Physical Review B, 77, 224101-1-224101-7.
|
[44]
|
Joe, M., Moon, M.W., Oh, J., Lee, K.H. and Lee, K.R. (2012) Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms. Carbon, 50, 404-410.
|
[45]
|
Vijapur, S.H., Wang, D. and Botte, G.G. (2013) The growth of transparent amorphous carbon thin films from coal. Carbon, 54, 22-28.
|
[46]
|
Fan, X., Nose, K., Diao, D. and Yoshida, T. (2013) Nanoindentation behaviors of amorphous carbon films containing nanocrystalline graphite and diamond clusters prepared by radio frequency sputtering. Applied Surface Science, 273, 816-823.
|
[47]
|
Soininen, A., Levon, J., Katsikogianni, M., Myllymaa, K., Lappalainen, R., Konttinen, Y.T., Kinnari, T.J., Tiainen, V.M. and Missirlis, Y. (2011) In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. Journal of Materials Science: Materials in Medicine, 22, 629-636.
|
[48]
|
Li, Y., Zhang, G.F., Hou, X.D. and Deng, D.W. (2013) Growth mechanism of carbon films from organic electrolytes. Journal of Materials Science, 48, 3505-3510.
|
[49]
|
Li, X., Ke, P., Zheng, H. and Wang, A. (2013) Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study. Applied Surface Science, 273, 670-675.
|