[1]
|
Ahlfors, S. P., Han, J., Belliveau, J. W., & Hämäläinen, M. S. (2010). Sensitivity of MEG and EEG to Source Orientation. Brain Topography, 23, 227-232. http://dx.doi.org/10.1007/s10548-010-0154-x
|
[2]
|
Blatow, M., Nennig, E., Durst, A., Sartor, K., & Stippich, C. (2007). fMRI Reflects Functional Connectivity of Human Somatosensory Cortex. Neuroimage, 37, 927-936. http://dx.doi.org/10.1016/j.neuroimage.2007.05.038
|
[3]
|
Burton, H., Fabri, M., & Alloway, K. (1995). Cortical Areas within the Lateral Sulcus Connected to Cutaneous Representations in Areas 3b and 1: A Revised Interpretation of the Second Somatosensory Area in Macaque Monkeys. Journal of Comparative Neurology, 355, 539-562. http://dx.doi.org/10.1002/cne.903550405
|
[4]
|
Chen, T. L., Babiloni, C., Ferretti, A., Perrucci, M. G., Romani, G. L., Rossini, P. M., Tartaro, A., & Del Gratta, C. (2008). Human Secondary Somatosensory Cortex Is Involved in the Processing of Somatosensory Rare Stimuli: An fMRI Study. Neuroimage, 40, 1765-1771. http://dx.doi.org/10.1016/j.neuroimage.2008.01.020
|
[5]
|
Chung, Y. G., Han, S. W., Kim, H.-S., Chung, S.-C., Park, J.-Y., Wallraven, C., & Kim, S.-P. (2014). Intra- and Inter- Hemispheric Effective Connectivity in the Human Somato-sensory Cortex during Pressure Stimulation. BMC Neuroscience, 15, 43. http://dx.doi.org/10.1186/1471-2202-15-43
|
[6]
|
Chung, Y. G., Kim, J., Han, S. W., Kim, H.-S., Choi, M. H., Chung, S.-C., Park, J. Y., & Kim, S.-P. (2013). Frequency- Dependent Patterns of Somatosensory Cortical Responses to Vibro-tactile Stimulation in Humans: A fMRI Study. Brain Research, 1504, 47-57. http://dx.doi.org/10.1016/j.brainres.2013.02.003
|
[7]
|
Delmas, P., Hao, J., & Rodat-Despoix, L. (2011). Molecular Mechanisms of Mechanotransduction in Mammalian Sensory Neurons. Nature Reviews Neuroscience, 12, 139-153. http://dx.doi.org/10.1038/nrn2993
|
[8]
|
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic Predictions: Oscillations and Synchrony in Top-Down Processing. Nature Reviews Neuroscience, 2, 704-716. http://dx.doi.org/10.1038/35094565
|
[9]
|
Fitzgerald, P. J., Lane, J. W., Thakur, P. H., & Hsiao, S. S. (2006). Receptive Field (RF) Properties of the Macaque Second Somatosensory Cortex: RF Size, Shape, and Somatotopic Organization. The Journal of Neuroscience, 26, 6485-6495.
http://dx.doi.org/10.1523/JNEUROSCI.5061-05.2006
|
[10]
|
Friedman, D. P., & Murray, E. A. (1986). Thalamic Connectivity of the Second Somatosensory Area and Neighboring Somatosensory Fields of the Lateral Sulcus of the Ma-caque. Journal of Comparative Neurology, 252, 348-373.
http://dx.doi.org/10.1002/cne.902520305
|
[11]
|
Friedman, R. M., Chen, L. M., & Roe, A. W. (2004). Modality Maps within Primate Somatosensory Cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 12724-12729.
http://dx.doi.org/10.1073/pnas.0404884101
|
[12]
|
Friston, K. (2005). A Theory of Cortical Responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 815-836. http://dx.doi.org/10.1098/rstb.2005.1622
|
[13]
|
Frot, M., Magnin, M., Mauguière, F., & Garcia-Larrea, L. (2007). Human SII and Posterior Insula Differently Encode Thermal Laser Stimuli. Cerebral Cortex, 17, 610-620. http://dx.doi.org/10.1093/cercor/bhk007
|
[14]
|
Gao, L., Sommerlade, L., Coffman, B., Zhang, T. S., Stephen, J. M., Li, D. C., Wang, J., Grebogi, C., & Schelter, B. (2015). Granger Causal Time-Dependent Source Connectivity in the Somato-sensory Network. Scientific Reports, 5.
http://dx.doi.org/10.1038/srep10399
|
[15]
|
Garraghty, P. E., Florence, S. L., Tenhula, W. N., & Kaas, J. H. (1991). Parallel Thalamic Activation of the First and Second Somatosensory Areas in Prosimian Primates and Tree Shrews. Journal of Comparative Neurology, 311, 289-299.
http://dx.doi.org/10.1002/cne.903110209
|
[16]
|
Garraghty, P. E., Pons, T. P., & Kaas, J. H. (1990). Ablations of Areas 3b (SI Proper) and 3a of Somatosensory Cortex in Marmosets Deactivate the Second and Parietal Ventral Somatosensory Areas. Somatosensory & Motor Research, 7, 125- 135. http://dx.doi.org/10.3109/08990229009144703
|
[17]
|
Gilbert, C. D., & Li, W. (2013). Top-Down Influences on Visual Processing. Nature Reviews Neuroscience, 14, 350-363.
http://dx.doi.org/10.1038/nrn3476
|
[18]
|
Gilbert, C. D., & Sigman, M. (2007). Brain States: Top-Down Influences in Sensory Processing. Neuron, 54, 677-696.
http://dx.doi.org/10.1016/j.neuron.2007.05.019
|
[19]
|
Grabenhorst, F., & Rolls, E. T. (2010). Attentional Modulation of Affective versus Sensory Processing: Functional Connectivity and a Top-Down Biased Activation Theory of Selective Attention. Journal of Neurophysiology, 104, 1649-1660.
http://dx.doi.org/10.1152/jn.00352.2010
|
[20]
|
Hagiwara, K., Okamoto, T., Shigeto, H., Ogata, K., Somehara, Y., Matsushita, T., Tobimatsu, S. et al. (2010). Oscillatory Gamma Synchronization Binds the Primary and Secondary Soma-tosensory Areas in Humans. Neuroimage, 51, 412-420.
http://dx.doi.org/10.1016/j.neuroimage.2010.02.001
|
[21]
|
Hall, E. L., Robson, S. E., Morris, P. G., & Brookes, M. J. (2014). The relationship between MEG and fMRI. Neuroimage, 102, 80-91. http://dx.doi.org/10.1016/j.neuroimage.2013.11.005
|
[22]
|
Hu, L., Zhang, Z. G., & Hu, Y. (2012). A Time-Varying Source Connectivity Approach to Reveal Human Somatosensory Information Processing. Neuroimage, 62, 217-228. http://dx.doi.org/10.1016/j.neuroimage.2012.03.094
|
[23]
|
Inui, K., Wang, X., Tamura, Y., Kaneoke, Y., & Kakigi, R. (2004). Serial Processing in the Human Somatosensory System. Cerebral Cortex, 14, 851-857. http://dx.doi.org/10.1093/cercor/bhh043
|
[24]
|
Johansson, R. S., & Flanagan, J. R. (2009). Coding and Use of Tactile Signals from the Fingertips in Object Manipulation Tasks. Nature Reviews Neuroscience, 10, 345-359. http://dx.doi.org/10.1038/nrn2621
|
[25]
|
Kalberlah, C., Villringer, A., & Pleger, B. (2013). Dynamic Causal Modeling Suggests Serial Processing of Tactile Vibratory Stimuli in the Human Somatosensory Cortex—An fMRI Study. Neuroi-mage, 74, 164-171.
http://dx.doi.org/10.1016/j.neuroimage.2013.02.018
|
[26]
|
Karhu, J., & Tesche, C. D. (1999). Simultaneous Early Processing of Sensory Input in Human Primary (SI) and Secondary (SII) Somatosensory Cortices. Journal of Neurophysi-ology, 81, 2017-2025.
|
[27]
|
Khoshnejad, M., Piché, M., Saleh, S., Duncan, G., & Rainville, P. (2014). Serial Processing in Primary and Secondary Somatosensory Cortex: A DCM Analysis of Human fMRI Data in Response to Innocuous and Noxious Electrical Stimulation. Neuroscience Letters, 577, 83-88. http://dx.doi.org/10.1016/j.neulet.2014.06.013
|
[28]
|
Klingner, C. M., Brodoehl, S., Huonker, R., Götz, T., Baumann, L., & Witte, O. W. (2015). Parallel Processing of Somatosensory Information: Evidence from Dynamic Causal Modeling of MEG Data. Neuroimage, 118, 193-198.
http://dx.doi.org/10.1016/j.neuroimage.2015.06.028
|
[29]
|
Knecht, S., Kunesch, E., & Schnitzler, A. (1996). Parallel and Serial Processing of Haptic Information in Man: Effects of Parietal Lesions on Sensorimotor Hand Function. Neurop-sychologia, 34, 669-687.
http://dx.doi.org/10.1016/0028-3932(95)00148-4
|
[30]
|
Koch, S. P., Habermehl, C., Mehnert, J., Schmitz, C. H., Holtze, S., Villringer, A., Obrig, H. et al. (2010). High-Resolution Optical Functional Mapping of the Human Somatosensory Cortex. Frontiers in Neuroenergetics, 2, 12.
http://dx.doi.org/10.3389/fnene.2010.00012
|
[31]
|
Kolb, B., & Whishaw, I. Q. (1998). Brain Plasticity and Behavior. Annual Review of Psychology, 49, 43-64.
http://dx.doi.org/10.1146/annurev.psych.49.1.43
|
[32]
|
Krubitzer, L. A., & Kaas, J. H. (1992). The Somatosensory Thalamus of Monkeys: Cortical Connections and a Redefinition of Nuclei in Marmosets. Journal of Comparative Neurology, 319, 123-140. http://dx.doi.org/10.1002/cne.903190111
|
[33]
|
Liang, M., Mouraux, A., & Iannetti, G. D. (2011). Parallel Processing of Nociceptive and Non-Nociceptive Somatosensory Information in the Human Primary and Secondary Somatosensory Cortices: Evidence from Dynamic Causal Modeling of Functional Magnetic Resonance Imaging Data. The Journal of Neuroscience, 31, 8976-8985.
http://dx.doi.org/10.1523/JNEUROSCI.6207-10.2011
|
[34]
|
Lin, Y. Y., & Forss, N. (2002). Functional Characteriza-tion of Human Second Somatosensory Cortex by Magnetoencephalography. Behavioural Brain Research, 135, 141-145. http://dx.doi.org/10.1016/S0166-4328(02)00143-2
|
[35]
|
Lockwood, P. L., Iannetti, G. D., & Haggard, P. (2013). Transcranial Magnetic Stimulation over Human Secondary Somatosensory Cortex Disrupts Perception of Pain Intensity. Cortex, 49, 2201-2209.
http://dx.doi.org/10.1016/j.cortex.2012.10.006
|
[36]
|
Logothetis, N. K. (2008). What We Can Do and What We Cannot Do with fMRI. Nature, 453, 869-878.
http://dx.doi.org/10.1038/nature06976
|
[37]
|
McGlone, F., & Reilly, D. (2010). The Cutaneous Sensory System. Neu-roscience & Biobehavioral Reviews, 34, 148-159.
http://dx.doi.org/10.1016/j.neubiorev.2009.08.004
|
[38]
|
Murray, G. M., Zhang, H. Q., Kaye, A. N., Sinnadurai, T., Campbell, D. H., & Rowe, M. J. (1992). Parallel Processing in Rabbit First (SI) and Second (SII) Somatosensory Cortical Areas: Effects of Reversible Inactivation by Cooling of SI on Responses in SII. Journal of Neurophysiology, 68, 703-710.
|
[39]
|
Onishi, H., Oyama, M., Soma, T., Kubo, M., Kirimoto, H., Murakami, H., & Kameyama, S. (2010). Neu-romagnetic Activation of Primary and Secondary Somatosensory Cortex Following Tactile-On and Tactile-Off Stimulation. Clinical Neurophysiology, 121, 588-593. http://dx.doi.org/10.1016/j.clinph.2009.12.022
|
[40]
|
Pais-Vieira, M., Lebedev, M. A., Wiest, M. C., & Nicolelis, M. A. L. (2013). Simultaneous Top-Down Modulation of the Primary Somatosensory Cortex and Thalamic Nuclei during Active Tactile Discrimination. Journal of Neuroscience, 33, 4076-4093. http://dx.doi.org/10.1523/JNEUROSCI.1659-12.2013
|
[41]
|
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The Plastic Human Brain Cortex. Annual Review of Neuroscience, 28, 377-401. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144216
|
[42]
|
Ploner, M., Gross, J., Timmermann, L., & Schnitzler, A. (2006). Pain Processing Is Faster than Tactile Processing in the Human Brain. The Journal of Neuroscience, 26, 10879-10882. http://dx.doi.org/10.1523/JNEUROSCI.2386-06.2006
|
[43]
|
Ploner, M., Schoffelen, J.-M., Schnitzler, A., & Gross, J. (2009). Functional Integration within the Human Pain System as Revealed by Granger Causality. Human Brain Mapping, 30, 4025-4032. http://dx.doi.org/10.1002/hbm.20826
|
[44]
|
Pons, T. P., & Kaas, J. H. (1986). Corti-cocortical Connections of Area 2 of Somatosensory Cortex in Macaque Monkeys: A Correlative Anatomical and Electro-physiological Study. Journal of Comparative Neurology, 248, 313-335.
http://dx.doi.org/10.1002/cne.902480303
|
[45]
|
Pons, T. P., Garraghty, P. E., & Mishkin, M. (1992). Serial and Parallel Processing of Tactual Information in Somatosensory Cortex of Rhesus Monkeys. Journal of Neurophysiology, 68, 518-527.
|
[46]
|
Raij, T., Karhu, J., Kičić, D., Lioumis, P., Julkunen, P., Lin, F.-H., Hämäläinen, M. et al. (2008). Parallel Input Makes the Brain Run Faster. Neuroimage, 40, 1792-1797. http://dx.doi.org/10.1016/j.neuroimage.2008.01.055
|
[47]
|
Ramalingam, N., McManus, J. N. J., Li, W., & Gilbert, C. D. (2013). Top-Down Modulation of Lateral Interactions in Visual Cortex. The Journal of Neuroscience, 33, 1773-1789. http://dx.doi.org/10.1523/JNEUROSCI.3825-12.2013
|
[48]
|
Rowe, M. J., Turman, A. B., Murray, G. M., & Zhang, H. Q. (1996). Parallel Organization of Somatosensory Cortical Areas I and II for Tactile Processing. Clinical and Experimental Pharmacology and Physiology, 23, 931-938.
http://dx.doi.org/10.1111/j.1440-1681.1996.tb01145.x
|
[49]
|
Sale, A., Berardi, N., & Maffei, L. (2014). Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiological Reviews, 94, 189-234. http://dx.doi.org/10.1152/physrev.00036.2012
|
[50]
|
Schnitzler, A., & Ploner, M. (2000). Neurophysiology and Func-tional Neuroanatomy of Pain Perception. Journal of Clinical Neurophysiology, 17, 592-603. http://dx.doi.org/10.1097/00004691-200011000-00005
|
[51]
|
Thakur, P. H., Fitzgerald, P. J., Lane, J. W., & Hsiao, S. S. (2006). Receptive Field Properties of the Macaque Second Somatosensory Cortex: Nonlinear Mechanisms Underlying the Representation of Orientation within a Finger Pad. The Journal of Neuroscience, 26, 13567-13575. http://dx.doi.org/10.1523/JNEUROSCI.3990-06.2006
|
[52]
|
Treede, R.-D., Kenshalo, D. R., Gracely, R. H., & Jones, A. K. P. (1999). The Cortical Representation of Pain. Pain, 79, 105-111. http://dx.doi.org/10.1016/S0304-3959(98)00184-5
|
[53]
|
Turman, A. B., Ferrington, D. G., Ghosh, S., Morley, J. W., & Rowe, M. J. (1992). Parallel Processing of Tactile Information in the Cerebral Cortex of the Cat: Effect of Reversible Inactivation of SI on Responsiveness of SII Neurons. Journal of Neurophysiology, 67, 411-429.
|
[54]
|
Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., & Friston, K. (2011). Effective Connectivity: Influence, Causality and Biophysical Modeling. Neuroimage, 58, 339-361. http://dx.doi.org/10.1016/j.neuroimage.2011.03.058
|
[55]
|
Wasaka, T., Nakata, H., Akatsuka, K., Kida, T., Inui, K., & Kakigi, R. (2005). Differential Modulation in Human Primary and Secondary Somatosensory Cortices during the Preparatory Period of Self-Initiated Finger Movement. European Journal of Neuroscience, 22, 1239-1247. http://dx.doi.org/10.1111/j.1460-9568.2005.04289.x
|
[56]
|
Worthen, S. F., Hobson, A. R., Hall, S. D., Aziz, Q., & Furlong, P. L. (2011). Primary and Secondary Somatosensory Cortex Responses to Anticipation and Pain: A Magnetoencephalography Study. European Journal of Neuroscience, 33, 946-959.
http://dx.doi.org/10.1111/j.1460-9568.2010.07575.x
|
[57]
|
Zhang, H. Q., Murray, G. M., Coleman, G. T., Turman, A. B., Zhang, S. P., & Rowe, M. J. (2001). Functional Characteristics of the Parallel SI-and SII-Projecting Neurons of the Thalamic Ventral Posterior Nucleus in the Marmoset. Journal of Neurophysiology, 85, 1805-1822.
|
[58]
|
Zhang, H. Q., Murray, G. M., Turman, A. B., Mackie, P. D., Coleman, G. T., & Rowe, M. J. (1996). Parallel Processing in Cerebral Cortex of the Marmoset Monkey: Effect of Reversible SI Inactivation on Tactile Responses in SII. Journal of Neurophysi-ology, 76, 3633-3655.
|
[59]
|
Zhang, H. Q., Zachariah, M. K., Coleman, G. T., & Rowe, M. J. (2001). Hierarchical Equi-valence of Somatosensory Areas I and II for Tactile Processing in the Cerebral Cortex of the Marmoset Monkey. Journal of Neurophysiology, 85, 1823- 1835.
|
[60]
|
Zhang, N., Gore, J. C., Chen, L. M., & Avison, M. J. (2007). Dependence of BOLD Signal Change on Tactile Stimulus Intensity in SI of Primates. Magnetic Resonance Imaging, 25, 784-794. http://dx.doi.org/10.1016/j.mri.2007.05.002
|