|
[1]
|
Heisenberg, W. (1927) Uber den anschaulichen inhalt der quanten theoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198. http://dx.doi.org/10.1007/BF01397280
|
|
[2]
|
Heinig, H.P. and Smith, M. (1986) Extensions of the Heisenberg-Weyl Inequality. International Journal of Mathe- matics and Science, 9, 185-192. http://dx.doi.org/10.1155/S0161171286000212
|
|
[3]
|
Selig, K.K. (2002) Uncertainty Principles Revisited. Electronic Transactions on Numerical Analysis, 14, 145-177.
|
|
[4]
|
Folland, G.B. and Sitaram, A. (1997) The Uncertainty Principle: A Mathematical Survey. The Journal of Fourier Analysis and Applications, 3, 207-238. http://dx.doi.org/10.1007/BF02649110
|
|
[5]
|
Hirschman Jr., I.I. (1957) A Note on Entropy. American Journal of Mathematics, 79, 152-156.
http://dx.doi.org/10.2307/2372390
|
|
[6]
|
Lohmann, A.W. (1994) Relationships between the Radon-Wigner and Fractional Fourier Transfoms. Journal of the Optical Society of America A, 11, 1398-1401. http://dx.doi.org/10.1364/JOSAA.11.001798
|
|
[7]
|
Majerník, V., Majerníková, E. and Shpyrko, S. (2003) Uncer-tainty Relations Expressed by Shannon-Like Entropies. Central European Journal of Physics, 3, 393-420. http://dx.doi.org/10.2478/bf02475852
|
|
[8]
|
Iwo, B.B. (1985) Entropic Uncertainty Relations in Quantum Me-chanics. In: Accardi, L. and von Waldenfels, W., Eds., Quantum Probability and Applications II, Lecture Notes in Mathematics 1136, Springer, Berlin, 90-103.
|
|
[9]
|
Stankovic, L., Alieva, T. and Bastiaans, M.J. (2003) Time-Frequency Signal Analysis Based on the Windowed Fractional Fourier Transform. Signal Processing, 83, 2459-2468. http://dx.doi.org/10.1016/S0165-1684(03)00197-X
|
|
[10]
|
Cohen, L. (2000) The Uncertainty Principles of Windowed Wave Functions. Optics Communications, 179, 221-229.
http://dx.doi.org/10.1016/S0030-4018(00)00454-5
|
|
[11]
|
Beckner, W. (1995) Pitt’s Inequality and the Uncertainty Principle. Proceedings of the American Mathematical Society, 123, 1897-1905. http://dx.doi.org/10.1090/s0002-9939-1995-1254832-9
|
|
[12]
|
Beckner, W. (1975) Inequalities in Fourier Analysis. The Annals of Mathematics, 102, 159-182.
http://dx.doi.org/10.2307/1970980
|
|
[13]
|
Cohen, L. (1994) The Uncertainty Principle in Signal Analysis. Proceed-ings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, IEEE, 182-185.
|
|
[14]
|
Loughlin, P.J. and Cohen, L. (2004) The Uncertainty Principle: Global, Local, or Both? IEEE Transaction on Signal Processing, 52, 1218-1227. http://dx.doi.org/10.1109/TSP.2004.826160
|
|
[15]
|
Ozaktas, H.M. and Aytur, O. (1995) Fractional Fourier Domains. Signal Processing, 46, 119-124.
http://dx.doi.org/10.1016/0165-1684(95)00076-P
|
|
[16]
|
Mustard, D. (1991) Uncertainty Principle Invariant under Fractional Fourier Transform. Journal of the Australian Mathematical Society Series B, 33, 180-191. http://dx.doi.org/10.1017/S0334270000006986
|
|
[17]
|
Shinde, S. and Vikram, M.G. (2001) An Uncertainty Principle for Real Signals in the Fractional Fourier Transformdomain. IEEE Transaction on Signal Processing, 49, 2545-2548. http://dx.doi.org/10.1109/78.960402
|
|
[18]
|
Stern, A. (2008) Uncertainty Principles in Linear Canonical Transform Domains and Some of Their Implications in Optics. Journal of the Optical Society of America A, 25, 647-652. http://dx.doi.org/10.1364/JOSAA.25.000647
|
|
[19]
|
Stern, A. (2007) Sampling of Compact Signals in Offset Linear Canonical Transform Domains. Signal, Image and video Processing, 1, 359-367. http://dx.doi.org/10.1007/s11760-007-0029-0
|
|
[20]
|
Aytur, O. and Ozaktas, H.M. (1995) Non-Orthogonal Domains in Phase Space of Quantum Optics and Their Relation to Fractional Fourier Transform. Optics Communications, 120, 166-170.
http://dx.doi.org/10.1016/0030-4018(95)00452-E
|
|
[21]
|
Maassen, H. (1988) A Discrete Entropic Uncertainty Rela-tion. In: In: Accardi, L. and von Waldenfels, W., Eds., Quantum Probability and Applications V, Springer-Verlag, New York, 263-266.
|
|
[22]
|
Maassen, H. and Uffink, J.B.M. (1983) Generalized Entropic Uncertainty Relations. Physical Re-view Letters, 60, 1103-1106. http://dx.doi.org/10.1103/PhysRevLett.60.1103
|
|
[23]
|
Amir, D. and Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities. IEEE Trans Information Theory, 37, 1501-1508.
|
|
[24]
|
Iwo, B.B. (2006) Formulation of the Uncertainty Relations in Terms of the Rényi Entropies. Physical Review A, 74, Article ID: 052101.
|
|
[25]
|
Iwo, B.B. (2006) Rényi Entropy and the Uncertainty Relations. In: Adenier, G., Fuchs, C.A. and Khrennikov, A.Y., Eds., Foundations of Probability and Physics, American Institute of Physics, Melville, 52-62
|
|
[26]
|
Gill, J. (2005) An Entropymeasure of Uncertainty in Vote Choice. Electoral Studies, 1-22.
|
|
[27]
|
Rényi, A. (1976) Some Fundamental Questions of Information Theory. In: Selected Papers of Alfred Renyi, Vol. 2, Akademia Kiado, Budapest, 526-552.
|
|
[28]
|
Rényi, A. (1960) On Measures of Information and Entropy. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 547-561.
|
|
[29]
|
Sharma, K.K. and Joshi, S.D. (2008) Uncertainty Principle for Real Signals in the Linear Canonical Transform Domains. IEEE Transaction on Signal Processing, 56, 2677-2683. http://dx.doi.org/10.1109/TSP.2008.917384
|
|
[30]
|
Shannon, C.E. (1948) A Mathemat-ical Theory of Communication. The Bell System Technical Journal, 27, 379-656.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
|
|
[31]
|
Wódkiewicz, K. (1984) Operational Approach to Phase-Space Measurements in Quantum Mechanics. Physical Review Letters, 52, 1064-1067. http://dx.doi.org/10.1103/PhysRevLett.52.1064
|
|
[32]
|
Xu, G., Wang, X. and Xu, X. (2009) Three Cases of Uncer-tainty Principle for Real Signals in Linear Canonical Transform Domain. IET Signal Processing, 3, 85-92. http://dx.doi.org/10.1049/iet-spr:20080019
|
|
[33]
|
Xu, G., Wang, X. and Xu, X. (2009) Uncertainty Inequalities for Linear Canonical Transform. IET Signal Processing, 3, 392-402. http://dx.doi.org/10.1049/iet-spr.2008.0102
|
|
[34]
|
Xu, G., Wang, X. and Xu, X. (2009) The Logarithmic, Heisen-berg’s and Windowed Uncertainty Principles in Fractional Fourier Transform Domains. Signal Processing, 89, 339-343. http://dx.doi.org/10.1016/j.sigpro.2008.09.002
|
|
[35]
|
Xu, G., Wang, X. and Xu, X. (2009) The Entropic Uncertainty Principle in Fractional Fourier Transform Domains. Signal Processing, 89, 2692-2697. http://dx.doi.org/10.1016/j.sigpro.2009.05.014
|
|
[36]
|
Xu, G., Wang, X. and Xu, X. (2010) Novel Uncertainty Rela-tions in Fractional Fourier Transform Domain for Real Signals. Chinese Physics B, 19, 294-302.
|
|
[37]
|
Xu, G., Wang, X. and Xu, X. (2009) New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit. EURASIP Journal on Advances in Signal Processing, 1-17.
|
|
[38]
|
Zhao, J., Tao, R., Li, Y. and Wang, Y. (2009) Uncertainty Prin-ciples for Linear Canonical Transform. IEEE Transactions on Signal Processing, 57, 2856-2858. http://dx.doi.org/10.1109/TSP.2009.2020039
|
|
[39]
|
Xia, X.G. (1996) On Bandlimited Signals with Fractional Fourier Transform. IEEE Signal Processing Letter, 3, 72-74.
http://dx.doi.org/10.1109/97.481159
|
|
[40]
|
Wilk, G. and Włodarczyk, Z. (2009) Uncertainty Relations in Terms of the Tsallis Entropy. Physical Review A, 79, Article ID: 062108. http://dx.doi.org/10.1103/PhysRevA.79.062108
|
|
[41]
|
Amir, D., Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities, IEEE Trans Information Theory, 37, 1501-1508.
|
|
[42]
|
Xu, G., Wang, X., Zhou, L., Shao, L. and Xu, X. (2013) Discrete Entropic Uncertainty Relations Associated with FRFT. Journal of Signal and Information Processing, 4, 120-124. http://dx.doi.org/10.4236/jsip.2013.43B021
|
|
[43]
|
Xu, X.G., Wang, X.T., Wang, L., Liu, B., Su, S. and Xu, X. (2013) Generalized Uncertainty Principles Associated with Hilbert Transform. Signal, Image and Video Processing, 8, 279-285. http://dx.doi.org/10.1007/s11760-013-0547-x
|
|
[44]
|
Xu, G., Wang, X. and Zhou, L. (2013) Generalized Uncertainty Relations on Fractional Fourier Transform for Discrete Signals and Filtering of LFM Signals. Journal of Signal and Information Processing, 4, 274-281.
http://dx.doi.org/10.4236/jsip.2013.43035
|
|
[45]
|
Tao, R., Li, Y. and Wang, Y. (2009) Short-Time Fractional Fourier Transform and Its Applications. IEEE Transaction on Signal Processing, 58, 2568-2580. http://dx.doi.org/10.1109/TSP.2009.2028095
|
|
[46]
|
Ozaktas, H.M., Kutay, M.A. and Zalevsky, Z. (2000) The Fractional Fourier Transform with Applications in Optics and Signal Processing. John Wiley & Sons, New York.
|
|
[47]
|
Pei, S.C., Yeh, M.H. and Luo, T.L. (1999) Fractional Fourier Series Expansion for Finite Signals and Dual Extension to Discrete-Time Fractional Fourier Transform. IEEE Transaction on Signal Processing, 47, 2883-2888.
http://dx.doi.org/10.1109/78.790671
|
|
[48]
|
Xu, G., Wang, X. and Xu, X. (2010) On Uncertainty Principle for the Linear Canonical Transform of Complex Signals. IEEE Transactions on Signal Processing, 58, 4916-4918. http://dx.doi.org/10.1109/TSP.2010.2050201
|
|
[49]
|
Almeida, L.B. (1994) The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transaction on Signal Processing, 42, 3084-3091. http://dx.doi.org/10.1109/78.330368
|
|
[50]
|
Dang, P., Deng, G.-T. and Qian, T. (2013) A Tighter Uncertainty Prin-ciple for Linear Canonical Transform in Terms of Phase Derivative. IEEE Transactions on Signal Processing, 61, 5153-5164.
http://dx.doi.org/10.1109/TSP.2013.2273440
|
|
[51]
|
Dang, P., Deng, G.-T. and Qian, T. (2013) A Sharper Uncer-tainty Principle. Journal of Functional Analysis, 265, 2239- 2266. http://dx.doi.org/10.1016/j.jfa.2013.07.023
|
|
[52]
|
Shi, J., Liu, X. and Zhang, N. (2012) On Uncertainty Principle for Signal Concentrations with Fractional Fourier Transform. Signal Processing, 92, 2830-2836. http://dx.doi.org/10.1016/j.sigpro.2012.04.008
|
|
[53]
|
Pei, S.-C. and Ding, J.-J. (2009) Uncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform. Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, October 4-7, 2009, 414-417.
|
|
[54]
|
陶然, 邓兵, 王越. 分数阶Fourier变换及其应用[M]. 北京: 北京清华大学出版社, 2009.
|
|
[55]
|
冉启文, 谭立英. 分数傅里叶光学导论[M]. 北京: 北京科学出版社, 2004.
|
|
[56]
|
张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 北京国防工业出版社, 1998.
|
|
[57]
|
Xu, G., Wang, X., Zhou, L. and Xu, X. (2013) New Inequalities on Sparse Representation in Pairs of Bases. IET Signal Processing, 7, 674-683. http://dx.doi.org/10.1049/iet-spr.2012.0365
|
|
[58]
|
Xu, G., Wang, X., Xu, X. and Zhou, L. (2016) Entropic Uncer-tainty Inequalities on Sparse Representation. IET Signal Processing, 10, 413-421. http://dx.doi.org/10.1049/iet-spr.2014.0072
|
|
[59]
|
Donoho, D. and Stark, P. (1989) Uncertainty Principles and Signal Recovery. SIAM Journal on Applied Mathematics, 49, 906-931. http://dx.doi.org/10.1137/0149053
|
|
[60]
|
Donoho, D. (2006) Compressed Sensing. IEEE Transactions on Informa-tion Theory, 52, 1289-1306.
http://dx.doi.org/10.1109/TIT.2006.871582
|
|
[61]
|
Candès, E. and Romberg, J. (2007) Sparsity and Incoherence in Compressive Sampling. Inverse Problems, 23, 969-985.
http://dx.doi.org/10.1088/0266-5611/23/3/008
|
|
[62]
|
Candès, E.J. and Wakin, M.B. (2008) An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25, 21-30. http://dx.doi.org/10.1109/MSP.2007.914731
|
|
[63]
|
Donoho, D.L. and Huo, X. (2001) Uncertainty Principles and Ideal Atomic Decomposition. IEEE Transactions on Information Theory, 47, 2845-2862. http://dx.doi.org/10.1109/18.959265
|
|
[64]
|
Elad, M. and Bruckstein, A.M. (2002) A Generalized Uncertainty Prin-ciple and Sparse Representation in Pairs of Bases. IEEE Transactions on Information Theory, 48, 2558-2567. http://dx.doi.org/10.1109/TIT.2002.801410
|
|
[65]
|
Feuer, A. and Nemirovski, A. (2003) On Sparse Representation in Pairs of Bases. IEEE Transactions on Information Theory, 49, 1579-1581. http://dx.doi.org/10.1109/TIT.2003.811926
|
|
[66]
|
Gribonval, R. and Nielsen, M. (2003) Sparse Representations in Unions of Bases. IEEE Transactions on Information Theory, 49, 3320-3325. http://dx.doi.org/10.1109/TIT.2003.820031
|
|
[67]
|
Li, Y. and Amari, S. (2010) Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation. IEEE Transactions on Neural Networks, 21, 1189-1196. http://dx.doi.org/10.1109/TNN.2010.2049370
|
|
[68]
|
Fuchs, J.J. (2004) On Sparse Representations in Arbitrary Redundant Bases. IEEE Transactions on Information Theory, 50, 1341-1344. http://dx.doi.org/10.1109/TIT.2004.828141
|
|
[69]
|
Lyubarskii, Y. and Vershynin, R. (2010) Uncertainty Principles and Vector Quantization. IEEE Transactions on Information Theory, 56, 3491-3501. http://dx.doi.org/10.1109/TIT.2010.2048458
|
|
[70]
|
Patrick, K., Giuseppe, D. and Helmut, B. (2012) Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets. IEEE Transactions on Information Theory, 58, 263-277. http://dx.doi.org/10.1109/TIT.2011.2167215
|
|
[71]
|
Benjamin, R. and Bruno, T. (2013) Refined Support and Entropic Uncertainty Inequalities. IEEE Transactions on Information Theory, 59, 4272-4279. http://dx.doi.org/10.1109/TIT.2013.2249655
|
|
[72]
|
Goha, S.S. and Goodmanb, T.N.T. (2006) Uncertainty Principles in Banach Spaces and Signal Recovery. Journal of Approximation Theory, 143, 26-35. http://dx.doi.org/10.1016/j.jat.2006.03.009
|
|
[73]
|
Eldar, Y.C. (2009) Uncertainty Relations for Shift-Invariant Analog Signals. IEEE Transactions on Information Theory, 55, 5742-5757. http://dx.doi.org/10.1109/TIT.2009.2032711
|
|
[74]
|
Agaskar, A. and Lu, Y. (2013) A Spectral Graph Uncertainty Principle. IEEE Transactions on Information Theory, 59, 4338-4356. http://dx.doi.org/10.1109/TIT.2013.2252233
|
|
[75]
|
Candés, E.J. and Tao, T. (2005) Decoding by Linear Program-ming. IEEE Transactions on Information Theory, 51, 4203-4215. http://dx.doi.org/10.1109/TIT.2005.858979
|
|
[76]
|
Chen, S., Donoho, D.L. and Saunders, M.A. (1998) Atomic De-composition by Basis Pursuit. SIAM Journal on Scientific Computing, 20, 33-61. http://dx.doi.org/10.1137/S1064827596304010
|
|
[77]
|
Candès, E., Romberg, J. and Tao, T. (2005) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223. http://dx.doi.org/10.1002/cpa.20124
|
|
[78]
|
Davis, G., Mallat, S. and Avellaneda, M. (1997) Adaptive Greedy Approximations in Constructive Approximation. Springer-Verlag, New York, Vol. 13, 57-98.
|
|
[79]
|
Mallat, S. and Zhang, Z. (1993) Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415. http://dx.doi.org/10.1109/78.258082
|
|
[80]
|
Pati, Y.C., Rezaiifar, R. and Krishnaprasad, P.S. (1993) Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. Pro-ceeding of 27th Annual Asilomar Conference on Signals Systems and Computers, Asilomar, 1-3 November 2009, 40-44. http://dx.doi.org/10.1109/ACSSC.1993.342465
|
|
[81]
|
Candès, E., Romberg, J. and Tao, T. (2006) Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509.
http://dx.doi.org/10.1109/TIT.2005.862083
|
|
[82]
|
Tropp, J.A. (2004) Greed Is Good. IEEE Transactions on In-formation Theory, 50, 2231-2242.
http://dx.doi.org/10.1109/TIT.2004.834793
|
|
[83]
|
Cevher, V. and Krause, A. (2011) Greedy Dictionary Selection for Sparse Representation. IEEE Journal of Selected Topics in Signal Processing, 5, 979-2011. http://dx.doi.org/10.1109/JSTSP.2011.2161862
|
|
[84]
|
张贤达. 矩阵分析及应用[M]. 第二版. 北京: 清华大学出版社, 2015.
|
|
[85]
|
Tropp, J.A. and Gilbert, A.C. (2007) Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53, 4655-4666. http://dx.doi.org/10.1109/TIT.2007.909108
|
|
[86]
|
Needell, D. and Vershynin, R. (2007) Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit. Foundations of Computational Mathe-matics, 9, 317-334.
http://dx.doi.org/10.1007/s10208-008-9031-3
|
|
[87]
|
Donoho, D.L., et al. (2006) Sparse Solution of Underdeter-mined Linear Equations by Stagewise Orthogonal Matching Pursuit. Department of Statistics, Stanford University, Stanford, Technical Report 2006-02, 200.
|
|
[88]
|
Blumensath, T. and Davies, M.E. (2008) Gradient Pursuits. IEEE Transactions on Signal Processing, 56, 2370-2382.
http://dx.doi.org/10.1109/TSP.2007.916124
|
|
[89]
|
Mohimani, G.H., Babaie-Zadeh, M. and Jutten, C. () Com-plex-Valued Sparse Representation Based on Smoothed l0 norm. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, March 2008, 3881- 3884.
|
|
[90]
|
Mohimani, H., Babaie-Zadeh, M. and Jutten, C. (2009) A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm. IEEE Transaction on Signal Processing, 57, 289-301.
http://dx.doi.org/10.1109/TSP.2008.2007606
|
|
[91]
|
Ji, S. and Carin, L. (2007) Bayesian Compressive Sensing and Projection Optimization. Proceedings of the 24th International Conference on Machine Learning (ICML). Corvallis, 20-24 June 2007, 377-384.
http://dx.doi.org/10.1145/1273496.1273544
|
|
[92]
|
Ji, S., et al. (2008) Bayesian Compressive Sensing. IEEE Transactions on Signal Processing, 56, 2346-2356.
http://dx.doi.org/10.1109/TSP.2007.914345
|
|
[93]
|
Baraniuk, R., Cevher, V., Duarte, M.F. and Hegde, C. (2010) Model Based Compressive Sensing. IEEE Transactions on Information Theory, 56, 1982-2001. http://dx.doi.org/10.1109/TIT.2010.2040894
|
|
[94]
|
Natarajan, B.K. (1995) Sparse Approximate Solutions to Linear Systems. SIAM Journal of Computing, 24, 227-234.
http://dx.doi.org/10.1137/S0097539792240406
|
|
[95]
|
Candes, E.J. and Tao, T. (2009) The Power of Convex Re-laxation: Near-Optimal Matrix Completion. IEEE Transactions on Information Theory, 56, 2053-2080. http://dx.doi.org/10.1109/TIT.2010.2044061
|
|
[96]
|
Chandrasekaran, V., Sanghavi, S., Parrilo, P.A. and Willsky, A.S. (2011) Rank-Sparsity Incoherence for Matrix Decomposition. SIAM Journal on Optimization, 21, 572-596. http://dx.doi.org/10.1137/090761793
|
|
[97]
|
Cai, J.F., Candes, E.J. and Shen, Z.W. (2010) A Singular Value Thre-sholding Algorithm for Matrix Completion. SIAM Journal on Optimizatinon, 20, 1956-1982. http://dx.doi.org/10.1137/080738970
|
|
[98]
|
Ma, S., Goldfarb, D. and Chen, L. (2008) Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization. Technical Report.
|
|
[99]
|
Keshavan, R.H., Montanari, A. and Sewoong, O.H. (2010) Matrix Completion from a Few Entries. IEEE Transactions on Information Theory, 56, 2980-2998. http://dx.doi.org/10.1109/TIT.2010.2046205
|
|
[100]
|
Benjamin, R. (2009) A Simpler Approach to Matrix Completion. Journal of Machine Learning Research, 12, 3413- 3430.a
|