[1]
|
Guo, W.H., Liu, T.J., Yoo, P.J., et al. (2015) Free-Standing Porous Manganese Dioxide/Graphene Composite Films for High Perfor-mance Supercapacitors. Journal of Colloid and Interface Science, 437, 304-310.
https://doi.org/10.1016/j.jcis.2014.08.060
|
[2]
|
Li, Y.Y., Li, Z.S., Pei, K.S., et al. (2013) Simultaneous Formation of Ultrahigh Surface Area and Three-Dimensional Hierarchical Porous Graphene-Like Networks for Fast and Highly Stable Supercapacitors. Ad-vanced Materials, 25, 2474-2480. https://doi.org/10.1002/adma.201205332
|
[3]
|
Wu, Z.S., Sun, Y., Tan, Y.Z., et al. (2012) Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. JACS, 134, 19532-19535.
https://doi.org/10.1021/ja308676h
|
[4]
|
Ren, L., Hui, K.N., Hui, K.S., et al. (2015) 3D Hierarchical Porous Graphene Aerogel with Tunable Meso-Poreson Graphene Nanosheets for Highperformance Energy Storage. Scientific Reports, 5, 14229-14239.
https://doi.org/10.1038/srep14229
|
[5]
|
Xu, Y., Sheng, K., Li, C. et al. (2010) Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano, 4, 4324-4330. https://doi.org/10.1021/nn101187z
|
[6]
|
Upadhyay, R.K., Soinb, N., Roy, S.S., et al. (2014) Role of Graphene/Metal Oxide Composites as Photocatalysts, Adsorbents and Disinfectants in Water Treatment: A Review. The Royal Society of Chemistry, 4, 3823-3851.
|
[7]
|
Chen, X.M., Wu, G.H., Chen, J.M., et al. (2011) Synthesis of “Clean” and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. JACS, 133, 3693-3695. https://doi.org/10.1021/ja110313d
|
[8]
|
Zhang, S., Shao, Y.Y., Liao, H.G., et al. (2011) Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 23, 1079-1081.
https://doi.org/10.1021/cm101568z
|
[9]
|
Wang, D.H., Choi, D.W., Li, J., et al. (2009) Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, ACS Nano, 3, 907-914. https://doi.org/10.1021/nn900150y
|
[10]
|
Wang, D.G., Kou, R., Choi, D.W., et al. (2010) Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano, 4, 1587-1595. https://doi.org/10.1021/nn901819n
|
[11]
|
Su, Y.Z., Li, S., Wu, D.Q., et al. (2012) Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage. ACS Nano, 6, 8349-8356. https://doi.org/10.1021/nn303091t
|
[12]
|
He, C.N., Wu, S., Zhao, N.Q., et al. (2013) Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material. ACS Nano, 7, 4459-4469. https://doi.org/10.1021/nn401059h
|
[13]
|
Dong, X.C., Xu, H., Wang, X.W., et al. (2012) 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glu-cose Detection. ACS Nano, 6, 3206-3213. https://doi.org/10.1021/nn300097q
|
[14]
|
Bose, S., Kuila, T., Mishra, A.K., et al. (2012) Carbon-Based Nanostructured Materials and Their Composites as Supercapacitor Electrodes. Journal of Materials Chemistry, 22, 767-784. https://doi.org/10.1039/C1JM14468E
|
[15]
|
Wang, H.L., Chris, M.B., Li, Z., et al. (2012) Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading. Nano Research, 5, 605-617. https://doi.org/10.1007/s12274-012-0246-x
|
[16]
|
Trung, N.B., Tam, T.V., Dang, D.K., et al. (2015) Facile Synthesis of Three-Dimensional Graphene/Nickel Oxide Nanoparticles Composites for High Performance Supercapacitor Electrodes. Chemical En-gineering Journal, 264, 603-609.
https://doi.org/10.1016/j.cej.2014.11.140
|
[17]
|
Truong, T.T., Liu, Y.Z., Ren, Y., et al. (2012) Morphological and Crystalline Evo-lution of Nanostructured MnO2 and Its Application in Lithium-Air Batteries. ACS Nano, 6, 8067-8077. https://doi.org/10.1021/nn302654p
|
[18]
|
Zhao, S.Q., Liu, T.M., Hou, D.W., et al. (2015) Controlled Synthesis of Hierarchical Birnessite-Type MnO2 Nanoflowers for Supercapacitor Applications. Surface Science, 356, 259-265. https://doi.org/10.1016/j.apsusc.2015.08.037
|
[19]
|
Ashoka, S., Nagaraju, G. and Chandrappa, G.T. (2010) Reduction of KMnO4 to Mn3O4 via Hydrothermal Process. Materials Letters, 64, 2538-2540. https://doi.org/10.1016/j.matlet.2010.08.003
|
[20]
|
Wang, J.G., Jin, D.D., Zhou, J.R., et al. (2016) Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries. ACS Nano, 10, 6227-6234. https://doi.org/10.1021/acsnano.6b02319
|
[21]
|
杨小凡. 四氧化三锰纳米晶/石墨烯复合电极材料制备及其电化学性质[D]: [硕士学位论文]. 陕西: 陕西师范大学, 2016.
|
[22]
|
Peak, S.M., Yoo, E.J. and Honma, I. (2009) Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters, 9, 72-75. https://doi.org/10.1021/nl802484w
|
[23]
|
Cheng, Y.W., Lu, S.T., Zhang, H.B., et al. (2012) Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. Nano Letters, 12, 4206-4211.
https://doi.org/10.1021/nl301804c
|
[24]
|
Yue, J., Gu, X., Chen, L., et al. (2014) General Synthesis of Hollow MnO2, Mn3O4 and MnO Nanospheres as Superior Anode Materials for Lithium Ion Batteries. Journal of Materials Chemistry A, 2, 17421-17426.
https://doi.org/10.1039/C4TA03924F
|
[25]
|
Dolbin, A.V., Khlistyuck, M.V., Esel’son, V.B., et al. (2015) The Effect of the Ther-mal Reduction Temperature on the Structure and Sorption Capacity of Reduced Graphene Oxide Materials. Applied Surface Science, 361, 213-220.
https://doi.org/10.1016/j.apsusc.2015.11.167
|
[26]
|
Wu, C., Huang, X., Wang, G., et al. (2013) Highly Conductive Nanocompo-sites with Three-Dimensional, Compactly Interconnected Graphene Networks via a Self-Assembly Process. Advanced Functional Ma-terials, 23, 506-513.
https://doi.org/10.1002/adfm.201201231
|
[27]
|
Wang, H.Y., Wang, B.Y., Meng, J.K., et al. (2015) One-Step Synthesis of Co-Doped Zn2SnO4-Graphene-Carbon Nanocomposites with Improved Lithium Storage Performances. Journal of Materials Chemistry A, 3, 1023-1030.
https://doi.org/10.1039/C4TA03144J
|
[28]
|
刘永欣, 唐佳勇, 王诗迪, 马晓华. 石墨烯/镍掺杂二氧化锰复合材料的电化学性能[J].电池, 2014, 44(5): 268-270.
|