|
[1]
|
World Health Organization (2019) Global Tuberculosis Report 2019. WHO, Geneva, 15-40.
|
|
[2]
|
Shukla, S.D., Budden, K.F., Neal, R., et al. (2017) Microbiome Effects on Immunity, Health and Disease in the Lung. Clinical & Translational Immunology, 6, e133. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Namasivayam, S., Sher, A., Glickman, M.S., et al. (2018) The Microbiome and Tuberculosis: Early Evidence for Cross Talk. mBio, 9, e01420-18. [Google Scholar] [CrossRef]
|
|
[4]
|
Russell, S.L., Gold, M.J., Willing, B.P., et al. (2013) Perinatal Antibiotic Treatment Affects Murine Microbiota, Immune Responses and Allergic Asthma. Gut Microbes, 4, 158-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nicholson, J.K., Holmes, E., Kinross, J., et al. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hooper, L.V., Littman, D.R. and Macpherson, A.J. (2012) Interactions between the Microbiota and the Immune System. Science, 336, 1268-1273. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Su, D., Nie, Y., Zhu, A., et al. (2016) Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 7, 498. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Enaud, R., Prevel, R., Ciarlo, E., et al. (2020) The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Frontiers in Cellular and Infection Microbiology, 10, 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Brown, R.L., Sequeira, R.P. and Clarke, T.B. (2017) The Microbiota Protects against Respiratory Infection via GM-CSF Signaling. Nature Communications, 8, Article No. 1512. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sekyere, J.O., Maningi, N.E. and Fourie, P.B. (2020) Mycobacterium Tuberculosis, Antimicrobials, Immunity, and Lung-Gut Microbiota Crosstalk: Current Updates and Emerging Advances. Annals of the New York Academy of Sciences, 1467, 21-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Negatu, D.A., Liu, J.J., Zimmerman, M., et al. (2018) Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrobial Agents and Chemotherapy, 62, e01571-17. [Google Scholar] [CrossRef]
|
|
[12]
|
Dodd, D., Spitzer, M.H., Van Treuren, W., et al. (2017) A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature, 551, 648-652. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Donohoe, D.R., Collins, L.B., Wali, A., et al. (2012) The Warburg Effect Dictates the Mechanism of Butyrate-Mediated Histone Acetylation and Cell Proliferation. Molecular Cell, 48, 612-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Corrêa-Oliveira, R., Fachi, J.L., Vieira, A., et al. (2016) Regulation of Immune Cell Function by Short-Chain Fatty Acids. Clinical & Translational Immunology, 5, e73. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lachmandas, E., van den Heuvel, C.N., Damen, M.S., et al. (2016) Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. Journal of Diabetes Research, 2016, Article ID: 6014631. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Larsen, N., Vogensen, F.K., van den Berg, F.W., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Restrepo, B.I. and Schlesinger, L.S. (2014) Impact of Diabetes on the Natural History of Tuberculosis. Diabetes Research and Clinical Practice, 106, 191-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gill, N., Wlodarska, M. and Finlay, B.B. (2010) The Future of Mucosal Immunology: Studying an Integrated System-Wide Organ. Nature Immunology, 11, 558-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Winglee, K., Eloe-Fadrosh, E., Gupta, S., et al. (2014) Aerosol Mycobacterium Tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS ONE, 9, e97048. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Maynard, C.L., Elson, C.O., Hatton, R.D., et al. (2012) Reciprocal Interactions of the Intestinal Microbiota and Immune System. Nature, 489, 231-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Troy, E.B. and Kasper, D.L. (2010) Beneficial Effects of Bacteroides fragilis Polysaccharides on the Immune System. Frontiers in Bioscience (Landmark Ed), 15, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Becattini, S., Littmann, E.R., Carter, R.A., et al. (2017) Commensal Microbes Provide First Line Defense against Listeria monocytogenes Infection. Journal of Experimental Medicine, 214, 1973-1989. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sekirov, I., Tam, N.M., Jogova, M., et al. (2008) Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection. Infection and Immunity, 76, 4726-4736. [Google Scholar] [CrossRef]
|
|
[24]
|
Abt, M.C., Osborne, L.C., Monticelli, L.A., et al. (2012) Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 37, 158-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Khan, N., Vidyarthi, A., Nadeem, S., et al. (2016) Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Frontiers in Immunology, 7, 529. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Brugueras, S., Molina, V.I., Casas, X., et al. (2020) Tuberculosis Recurrences and Predictive Factors in a Vulnerable Population in Catalonia. PLoS ONE, 15, e0227291. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Namasivayam, S., Maiga, M., Yuan, W., et al. (2017) Longitudinal Profiling Reveals a Persistent Intestinal Dysbiosis Triggered by Conventional Anti-Tuberculosis Therapy. Microbiome, 5, 71. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Khan, N., Mendonca, L., Dhariwal, A., et al. (2019) Intestinal Dysbiosis Compromises Alveolar Macrophage Immunity to Mycobacterium tuberculosis. Mucosal Immunology, 12, 772-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cohen, S.B., Gern, B.H., Delahaye, J.L., et al. (2018) Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host & Microbe, 24, 439-446.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wipperman, M.F., Fitzgerald, D.W., Juste, M.A.J., et al. (2017) Antibiotic Treatment for Tuberculosis Induces a Profound Dysbiosis of the Microbiome That Persists Long after Therapy Is Completed. Scientific Reports, 7, Article No. 10767. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Schirmer, M., Smeekens, S.P., Vlamakis, H., et al. (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 167, 1125-1136.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tan, T.G., Sefik, E., Geva-Zatorsky, N., et al. (2016) Identifying Species of Symbiont Bacteria from the Human Gut That, Alone, Can Induce Intestinal Th17 Cells in Mice. Proceedings of the National Academy of Sciences of the United States of America, 113, E8141-E8150. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hu, Y., Yang, Q., Liu, B., et al. (2019) Gut Microbiota Associated with Pulmonary Tuberculosis and Dysbiosis Caused by Anti-Tuberculosis Drugs. Journal of Infection, 78, 317-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Stefka, A.T., Feehley, T., Tripathi, P., et al. (2014) Commensal Bacteria Protect against Food Allergen Sensitization. Proceedings of the National Academy of Sciences of the United States of America, 111, 13145-13150. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Thorburn, A.N., Macia, L. and Mackay, C.R. (2014) Diet, Metabolites, and “Western-Lifestyle” Inflammatory Diseases. Immunity, 40, 833-842. [Google Scholar] [CrossRef] [PubMed]
|