|
[1]
|
Kingsnorth, A. and LeBlanc, K. (2003) Hernias: Inguinal and Incisional. The Lancet, 362, 1561-1571. [Google Scholar] [CrossRef]
|
|
[2]
|
Lau, B., et al. (2012) Obesity Increases the Odds of Ac-quiring and Incarcerating Noninguinal Abdominal Wall Hernias. The American Surgeon, 78, 1118-1121. [Google Scholar] [CrossRef]
|
|
[3]
|
Collaboration, E.U.H.T. (2000) Mesh Compared with Non-Mesh Methods of Open Groin Hernia Repair: Systematic Review of Randomized Controlled Trials. British Journal of Surger, 87, 854-859.
|
|
[4]
|
Seker, D. and Kulacoglu, H. (2011) Long-Term Complications of Mesh Repairs for Ab-dominal-Wall Hernias. Journal of Long-Term Effects of Medical Implants, 21, 205-218.
|
|
[5]
|
Rakic, S. and LeBlanc, K.A. (2013) The Radiologic Appearance of Prosthetic Materials Used in Hernia Repair and a Recommended Classifica-tion. American Journal of Roentgenology, 201, 1180-1183. [Google Scholar] [CrossRef]
|
|
[6]
|
Bringman, S., et al. (2010) Hernia Repair: The Search for Ideal Mesh-es. Hernia, 14, 81-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Earle, D.B. and Mark, L.A. (2008) Prosthetic Material in Inguinal Hernia Repair: How Do I Choose? Surgical Clinics of North America, 88, 179-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Junge, K., et al. (2012) Mesh Biocompatibility: Effects of Cellular Inflammation and Tissue Remodelling. Langenbeck’s Archives of Surgery, 397, 255-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Klinge, U., et al. (1999) Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias. European Journal of Surgery, 165, 665-673.
|
|
[10]
|
Klosterhalfen, B., Junge, K. and Klinge, U. (2005) The Lightweight and Large Porous Mesh Concept for Hernia Repair. Expert Review of Medical Devices, 2, 103-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Williams, D.F. (2008) On the Mechanisms of Biocompatibility. Biomaterials, 29, 2941-2953. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Brown, C.N. and Finch, J.G. (2010) Which Mesh for Her-nia Repair? Annals of the Royal College of Surgeons of England, 92, 272-278. [Google Scholar] [CrossRef]
|
|
[13]
|
Cobb, W.S., et al. (2005) Normal Intraabdominal Pressure in Healthy Adults. Journal of Surgical Research, 129, 231-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pott, P.P., et al. (2012) Mechanical Properties of Mesh Materials Used for Hernia Repair and Soft Tissue Augmentation. PLoS ONE, 7, e46978. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Deeken, C.R., et al. (2011) Physicomechanical Evaluation of Polypropylene, Polyester, and Polytetrafluoroethylene Meshes for Inguinal Hernia Repair. Journal of the American Col-lege of Surgeons, 212, 68-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Junge, K., et al. (2001) Elasticity of the Anterior Ab-dominal Wall and Impact for Reparation of Incisional Hernias Using Mesh Implants. Hernia, 5, 113-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
中华医学会外科学分会疝和腹壁外科学组, 中国医师协会外科医师分会疝和腹壁外科医师委员会. 成人腹股沟疝诊疗指南(2014年版) [J]. 中国实用外科杂志, 2014, 34(6): 484-486.
|
|
[18]
|
Fischer, T., et al. (2007) Functional Cine MRI of the Abdomen for the Assessment of Implanted Synthet-ic Mesh in Patients after Incisional Hernia Repair: Initial Results. European Radiology, 17, 3123-3129. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Girish, G., et al. (2011) Usefulness of the Twinkling Artifact in Identifying Implanted Mesh after Inguinal Hernia Repair. Journal of Ultrasound in Medicine, 30, 1059-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
唐兴华, 等. 硫酸钡制剂在消化道造影中的不良反应及并发症研究进展[J]. 中国全科医学, 2013, 16(21): 2536-2538.
|
|
[21]
|
Pepiol, A., et al. (2011) A Highly Radiopaque Ver-tebroplasty Cement Using Tetraiodinated O-Carborane Additive. Biomaterials, 32, 6389-6398. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
张晗. 聚乙烯/硫酸钡纳米复合材料的制备和表征[D]: [硕士学位论文]. 天津: 天津理工大学, 2012.
|
|
[23]
|
Choi, S.Y., et al. (2015) Bioabsorbable Bone Fixation Plates for X-Ray Imaging Diagnosis by a Radiopaque Layer of Barium Sulfate and Poly(Lactic-Co-Glycolic Acid). Journal of Bi-omedical Materials Research Part B: Applied Biomaterials, 103, 596-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ginebra, M.P., et al. (2002) Mechanical Performance of Acrylic Bone Cements Containing Different Radiopacifying Agents. Biomaterials, 23, 1873-1882. [Google Scholar] [CrossRef]
|
|
[25]
|
Wimhurst, J.A., Brooks, R.A. and Rushton, N. (2001) The Effects of Particulate Bone Cements at the Bone-Implant Interface. The Journal of Bone and Joint Surgery, 83, 588-592.
|
|
[26]
|
马君志, 等. 防辐射粘胶短纤维的研制及性能分析[J]. 人造纤维, 2018, 48(6): 2-7.
|
|
[27]
|
Li, H., et al. (2021) Visualization of Implanted Mesh in the Pelvic Reconstructive Surgery Using an X-Ray-Detectable Thread. Ar-chives of Gynecology and Obstetrics, 304, 965-973. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Orucoglu, H. and Cobankara, F.K. (2008) Effect of Unintentionally Extruded Calcium Hydroxide Paste Including Barium Sulfate as a Radiopaquing Agent in Treatment of Teeth with Periapical Lesions: Report of a Case. Journal of Endodontics, 34, 888-891.
|
|
[29]
|
Li, X., et al. (2017) Clinical Observation of Adverse Drug Reactions to Non-Ionic Iodinated Contrast Media in Population with Underlying Diseases and Risk Factors. The British Journal of Radiology, 90, Article ID: 20160729. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
黄双, 等. 国内外造影剂的最新研究进展[J]. 中国药学杂志, 2010, 45(16): 1213-1217.
|
|
[31]
|
Ballard, D.H., et al. (2018) 3D Printing of Surgical Hernia Meshes Impregnated with Contrast Agents: In Vitro Proof of Concept with Imaging Characteristics on Computed Tomography. 3D Printing in Medicine, 4, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kiran, S., et al. (2009) Synthesis and Characterization of Iodinat-ed Polyurethane with Inherent Radiopacity. Biomaterials, 30, 5552-5559. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ghosh, P., et al. (2014) Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-Dihydrofuran for Non-Invasive Imaging. ACS Applied Materials & In-terfaces, 6, 17926-17936. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Aubert-Viard, F., et al. (2015) Chitosan Fin-ishing Nonwoven Textiles Loaded with Silver and Iodide for Antibacterial Wound Dressing Applications. Biomedical Materials, 10, Article ID: 015023. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
黄亦成, 等. 镍钛合金在医疗领域应用研究进展[J]. 生物医学工程学进展, 2015, 36(3): 169-172.
|
|
[36]
|
吕建祎, 等. 环境致癌物诱导慢性炎症致肺癌发生发展的研究进展[J]. 生物化学与生物物理进展, 2014, 41(1): 41-51.
|
|
[37]
|
Shemyatovsky, K.A., et al. (2020) Computed Tomography Options in the Evaluation of Hernia Repair Outcomes Using “Titanium Silk” Mesh Implants. Journal of Tissue Engi-neering and Regenerative Medicine, 14, 684-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gallez, B. and Swartz, H.M. (2004) In Vivo EPR: When, How and Why? NMR in Biomedicine, 17, 223-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kramer, N.A., et al. (2010) A Concept for Magnetic Resonance Visualiza-tion of Surgical Textile Implants. Investigative Radiology, 45, 477-483. [Google Scholar] [CrossRef]
|
|
[40]
|
Chen, L.Y., et al. (2017) MRI Visible Fe3O4 Polypropylene Mesh: 3D Reconstruction of Spatial Relation to Bony Pelvis and Neurovascular Structures. International Urogynecology Journal, 28, 1131-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guillaume, O., et al. (2012) Permanent Polymer Coating for in Vivo MRI Visualization of Tissue Reinforcement Prostheses. Macromolecular Bioscience, 12, 1364-1374. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
秦苗, 等. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
|
|
[43]
|
贡雪芃, 等. 对比剂的临床应用及其不良反应[J]. 医药导报, 2015, 34(9): 1192-1195.
|
|
[44]
|
Slabu, I., et al. (2012) Investigation of Superparamagnetic Iron Oxide Nanoparticles for MR-Visualization of Surgical Implants. Current Pharmaceutical Biotechnology, 13, 545-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Otto, J., et al. (2014) In Vivo MRI Visualization of Parastomal Mesh in a Porcine Model. Hernia, 18, 663-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Blanquer, S., et al. (2012) New Magnet-ic-Resonance-Imaging-Visible Poly(ε-Caprolactone)-Based Polyester for Biomedical Applications. Acta Biomaterialia, 8, 1339-13347. [Google Scholar] [CrossRef] [PubMed]
|