|
[1]
|
Wang, J. and Kaskel, S. (2012) KOH Activation of Carbon-Based Materials for Energy Storage. Journal of Materials Chemistry, 22, 23710-23725. [Google Scholar] [CrossRef]
|
|
[2]
|
Zhang, Y., Qu, T., Xiang, K., et al. (2018) In Situ Formation/Carbonization of Quinone-Amine Polymers towards Hierarchical Porous Carbon Foam with High Faradaic Activity for Energy Storage. Journal of Materials Chemistry A, 6, 2353-2359. [Google Scholar] [CrossRef]
|
|
[3]
|
Raza, W., Ali, F., Raza, N., et al. (2018) Recent Advancements in Su-percapacitor Technology. Nano Energy, 52, 441-473. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, Y., Chang, X., Wang, M., et al. (2021) Hierarchical CuCo2O4/CuO Nanoflowers Crosslinked with Carbon Nanotubes as an Advanced Electrode for Supercapacitors. Journal of Alloys and Compounds, 871, Article ID: 159555. [Google Scholar] [CrossRef]
|
|
[5]
|
Xin, X., Wang, Z., Jia, R., et al. (2020) Dual Nitrogen Sources Co-Doped Mesoporous Carbon with Ultrahigh Rate Capability for High-Performance Supercapacitors. Journal of Alloys and Compounds, 822, Article ID: 153627. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhao, Y., Zhao, Z., Zhu, Z., et al. (2021) Preparation of N-Doped Porous Carbons via High Internal Phase Emulsion Template. Progress in Natural Science: Materials Interna-tional, 31, 270-278. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhu, D., Wang, Y., Lu, W., et al. (2017) A Novel Synthesis of Hierarchical Porous Carbons from Interpenetrating Polymer Networks for High Performance Supercapacitor Electrodes. Carbon, 111, 667-674. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, C., Wang, J., Li, J., et al. (2016) Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 8, 7194-7204. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sydulu Singu, B., Srinivasan, P. and Yoon, K.R. (2016) Emulsion Polymerization Method for Polyaniline-Multiwalled Carbon Nanotube Nanocomposites as Supercapacitor Materials. Journal of Solid State Electrochemistry, 20, 3447-3457. [Google Scholar] [CrossRef]
|
|
[10]
|
Tan, Y., Zhang, Y., Kong, L., et al. (2017) Nano-Au@ PANI Core-Shell Nanoparticles via In-Situ Polymerization as Electrode for Supercapacitor. Journal of Alloys and Compounds, 722, 1-7. [Google Scholar] [CrossRef]
|
|
[11]
|
Cheng, J.X., Lu, Z.J., Zhao, X.F., et al. (2021) Green Needle Coke-Derived Porous Carbon for High-Performance Symmetric Supercapacitor. Journal of Power Sources, 49, Article ID: 229770. [Google Scholar] [CrossRef]
|
|
[12]
|
Baghayeri, M., Alinezhad, H., Fayazi, M., et al. (2019) Re-cycled LiMn2O4 from the Spent Lithium Ion Batteries as Cathode Material for Sodium Ion Batteries: Electrochemical Properties, Structural Evolution and Electrode Kinetics. Electrochimica Acta, 320, 80-88. [Google Scholar] [CrossRef]
|
|
[13]
|
Pol, V.G., Shrestha, L.K. and Ariga, K. (2014) Tunable, Func-tional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & In-terfaces, 6, 10649-10655. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, S., Xu, Y., Wu, J. and Huang, J. (2021) Celery-Derived Porous Carbon Materials for Superior Performance Supercapacitors. Nanoscale Advances, 3, 5363-5372. [Google Scholar] [CrossRef]
|
|
[15]
|
Wickramaratne, N.P., Xu, J., Wang, M., et al. (2014) Nitrogen En-riched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chemistry of Materials, 26, 2820-2828. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhang, P., Liu, M. and Liu, S. (2020) N-Doped Honeycomb-Like Hierar-chical Porous Carbon Foams for Supercapacitor Applications with Different PC/RF Mass Ratios. Journal of Materials Science: Materials in Electronics, 31, 3519-3528. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, B., Yang, M., Chen, H., et al. (2018) Graphene-Like Porous Carbon Nanosheets Derived from Salvia Splendens for High-Rate Performance Supercapacitors. Journal of Power Sources, 397, 1-10. [Google Scholar] [CrossRef]
|
|
[18]
|
Ji, Y., Deng, Y., Wu, H. and Tong, Z. (2019) In Situ Prepara-tion of P, O Co-Doped Carbon Spheres for High-Energy Density Supercapacitor. Journal of Applied Electrochemistry, 49, 599-607. [Google Scholar] [CrossRef]
|
|
[19]
|
Wang, J. and Kaskel, S. (2012) KOH Activation of Carbon-Based Materials for Energy Storage. Journal of Materials Chemistry, 22, 23710-23725. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, Y., Qu, T., Xiang, K., et al. (2018) In Situ Formation/Carbonization of Quinone-Amine Polymers towards Hierarchical Porous Carbon Foam with High Faradaic Activity for Energy Storage. Journal of Materials Chemistry A, 6, 2353-2359. [Google Scholar] [CrossRef]
|
|
[21]
|
Raza, W., Ali, F., Raza, N., et al. (2018) Recent Advancements in Su-percapacitor Technology. Nano Energy, 52, 441-473. [Google Scholar] [CrossRef]
|
|
[22]
|
Liu, Y., Chang, X., Wang, M., et al. (2021) Hierarchical CuCo2O4/CuO Nanoflowers Crosslinked with Carbon Nanotubes as an Advanced Electrode for Supercapacitors. Journal of Alloys and Compounds, 871, Article ID: 159555. [Google Scholar] [CrossRef]
|
|
[23]
|
Xin, X., Wang, Z., Jia, R., et al. (2020) Dual Nitrogen Sources Co-Doped Mesoporous Carbon with Ultrahigh Rate Capability for High-Performance Supercapacitors. Journal of Alloys and Compounds, 822, Article ID: 153627. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhao, Y., Zhao, Z., Zhu, Z., et al. (2021) Preparation of N-Doped Porous Carbons via High Internal Phase Emulsion Template. Progress in Natural Science: Materials Interna-tional, 31, 270-278. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhu, D., Wang, Y., Lu, W., et al. (2017) A Novel Synthesis of Hierarchical Porous Carbons from Interpenetrating Polymer Networks for High Performance Supercapacitor Electrodes. Carbon, 111, 667-674. [Google Scholar] [CrossRef]
|
|
[26]
|
Liu, C., Wang, J., Li, J., et al. (2016) Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 8, 7194-7204. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sydulu Singu, B., Srinivasan, P. and Yoon, K.R. (2016) Emulsion Polymerization Method for Polyaniline-Multiwalled Carbon Nanotube Nanocomposites as Supercapacitor Materials. Journal of Solid State Electrochemistry, 20, 3447-3457. [Google Scholar] [CrossRef]
|
|
[28]
|
Tan, Y., Zhang, Y., Kong, L., et al. (2017) Nano-Au@ PANI Core-Shell Nanoparticles via In-Situ Polymerization as Electrode for Supercapacitor. Journal of Alloys and Compounds, 722, 1-7. [Google Scholar] [CrossRef]
|
|
[29]
|
Cheng, J.X., Lu, Z.J., Zhao, X.F., et al. (2021) Green Needle Coke-Derived Porous Carbon for High-Performance Symmetric Supercapacitor. Journal of Power Sources, 49, Article ID: 229770. [Google Scholar] [CrossRef]
|
|
[30]
|
Baghayeri, M., Alinezhad, H., Fayazi, M., et al. (2019) Re-cycled LiMn2O4 from the Spent Lithium Ion Batteries as Cathode Material for Sodium Ion Batteries: Electrochemical Properties, Structural Evolution and Electrode Kinetics. Electrochimica Acta, 320, 80-88. [Google Scholar] [CrossRef]
|
|
[31]
|
Pol, V.G., Shrestha, L.K. and Ariga, K. (2014) Tunable, Func-tional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & In-terfaces, 6, 10649-10655. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liu, S., Xu, Y., Wu, J. and Huang, J. (2021) Celery-Derived Porous Carbon Materials for Superior Performance Supercapacitors. Nanoscale Advances, 3, 5363-5372. [Google Scholar] [CrossRef]
|
|
[33]
|
Wickramaratne, N.P., Xu, J., Wang, M., et al. (2014) Nitrogen En-riched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chemistry of Materials, 26, 2820-2828. [Google Scholar] [CrossRef]
|
|
[34]
|
Zhang, P., Liu, M. and Liu, S. (2020) N-Doped Honeycomb-Like Hierar-chical Porous Carbon Foams for Supercapacitor Applications with Different PC/RF Mass Ratios. Journal of Materials Science: Materials in Electronics, 31, 3519-3528. [Google Scholar] [CrossRef]
|
|
[35]
|
Liu, B., Yang, M., Chen, H., et al. (2018) Graphene-Like Porous Carbon Nanosheets Derived from Salvia Splendens for High-Rate Performance Supercapacitors. Journal of Power Sources, 397, 1-10. [Google Scholar] [CrossRef]
|
|
[36]
|
Ji, Y., Deng, Y., Wu, H. and Tong, Z. (2019) In Situ Preparation of P, O Co-Doped Carbon Spheres for High-Energy Density Supercapacitor. Journal of Applied Electrochemistry, 49, 599-607. [Google Scholar] [CrossRef]
|