学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 13 No. 4 (April 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
基于Sugeno测度半一致模Choquet积分的特性
The Character of the Choquet Integral ofSemi-Uninorm Based on Sugeno Measures
DOI:
10.12677/PM.2023.134109
,
PDF
,
HTML
,
,
被引量
科研立项经费支持
作者:
李巧霞
*
:伊犁师范大学数学与统计学院,新疆 伊宁 ;伊犁师范大学应用数学研究所,新疆 伊宁;
杨雨荷
,
辛 珍
:伊犁师范大学数学与统计学院,新疆 伊宁;伊犁师范大学应用数学研究所,新疆 伊宁
关键词:
Sugeno测度
;
Choquet积分
;
沙普值
;
否决和喜爱指数
;
Ugeno Measures
;
Choquet Integral
;
The Shapley
;
The Veto and Favor Indices
摘要:
本文在基于Sugeno 测度半一致模的Choquet积分的基础上, 结合基于半一致模有序加权平均算子的特点, 讨论了基于Sugeno 测度半一致模的Choquet积分的沙普值、否决和喜爱指数。
Abstract:
In this paper, the Shapley, the veto and favor indices of the Choquet Integral of semi-uninorm based on Sugeno measures are discussed and combine the characteristics of the the semi-uninorm ordered weighted averaging operators.
文章引用:
李巧霞, 杨雨荷, 辛珍. 基于Sugeno测度半一致模Choquet积分的特性[J]. 理论数学, 2023, 13(4): 1040-1048.
https://doi.org/10.12677/PM.2023.134109
参考文献
[1]
Grabisch, M. (1995) Fuzzy Integral in Multicriteria Decision Making. Fuzzy Sets and Systems, 69, 279-298.
https://doi.org/10.1016/0165-0114(94)00174-6
[2]
Yager, R.R. (1988) On Ordered Weighted Averaging Aggregation Operators in Muiticriteria Decision Making. IEEE Transactions on Systems, Man, and Cybernetics, 18, 183-190.
https://doi.org/10.1109/21.87068
[3]
Yager, R.R. (1993) Families of OWA Operators. Fuzzy Sets and Systems, 59, 125-148.
https://doi.org/10.1016/0165-0114(93)90194-M
[4]
Dujmovic, J.J. (2008) Continuous Preference Logic for System Evaluation. IEEE Transactions on Fuzzy Systems, 15, 1082-1099.
https://doi.org/10.1109/TFUZZ.2007.902041
[5]
Jin, L.S. (2015) Some Properties and Representation Methods for Ordered Weighted Averaging Operators. Fuzzy Sets and Systems, 261, 60-86.
https://doi.org/10.1016/j.fss.2014.04.019
[6]
Yager, R.R. (2004) OWA Aggregation over a Continuous Interval Argument with Applications to Decision Making. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34, 1952-1963.
https://doi.org/10.1109/TSMCB.2004.831154
[7]
Li, D.F. (2011) The GOWA Operator Based Approach to Multiattribute Decision Making Using Intuitionistic Fuzzy Sets. Mathematical and Computer Modelling, 53, 1182-1196.
https://doi.org/10.1016/j.mcm.2010.11.088
[8]
Llamazares, B. (2016) SUOWA Operators: Constructing Semi-Uninorms and Analyzing Specific Cases. Fuzzy Sets and Systems, 278, 119-136.
https://doi.org/10.1016/j.fss.2015.02.017
[9]
Llamazares, B. (2018) Closed-Form Expressions for Some Indices of SUOWA Operators. Information Fusion, 41, 80-90.
https://doi.org/10.1016/j.inffus.2017.08.010
[10]
吴从忻, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991.
[11]
Grabisch, M., Murofushi, T. and Sugeno, M. (2000) Fuzzy Measures and Integrals: Theory and Application. Physica-Verlag, Heidelberg.
[12]
巩增泰, 李巧霞. 基于Sugeno测度的半一致模有序加权平均算子及其递归集成器设计[J]. 模糊系统与数学, 2019, 33(6): 11-28.
投稿
为你推荐
友情链接
科研出版社
开放图书馆