|
[1]
|
Stadhouders, R., Lubberts, E. and Hendriks, R. (2018) A Cellular and Molecular View of T Helper 17 Cell Plasticity in Autoimmunity. Journal of Autoimmunity, 87, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kagami, S., Rizzo, H., Lee, J., et al. (2010) Circulating Th17, Th22, and Th1 Cells Are Increased in Psoriasis. Journal of Investiga-tive Dermatology, 130, 1373-1383. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Atarashi, K., Tanoue, T., Ando, M., et al. (2015) Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 163, 367-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Baeten, D., Baraliakos, X., Braun, J., et al. (2013) An-ti-Interleukin-17a Monoclonal Antibody Secukinumab in Treatment of Ankylosing Spondylitis: A Randomised, Dou-ble-Blind, Placebo-Controlled Trial. The Lancet, 382, 1705-1713. [Google Scholar] [CrossRef]
|
|
[5]
|
Reich, K., Warren, R., Lebwohl, M., et al. (2021) Bimeki-zumab versus Secukinumab in Plaque Psoriasis. The New England Journal of Medicine, 385, 142-152. [Google Scholar] [CrossRef]
|
|
[6]
|
Chang, D., Xing, Q., Su, Y., et al. (2020) The Conserved Non-Coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differ-entiation. Immunity, 53, 614-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Geng, J., Yu, S., Zhao, H., et al. (2017) The Transcriptional Coactivator TAZ Regulates Reciprocal Differentiation of TH17 Cells and Treg Cells. Nature Immunology, 18, 800-812. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xu, Z., Zhang, H., Li, W., et al. (2019) FAM64A Positively Regulates STAT3 Activity to Promote Th17 Differentiation and Colitis-Associated Carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 116, 10447-10452. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kono, M. (2023) New Insights into the Metabolism of Th17 Cells. Immunological Medicine, 46, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Johnson, M.O., Wolf, M.M., Madden, M.Z., et al. (2018) Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 175, 1780-1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Berod, L., Friedrich, C., Nandan, A., et al. (2014) De Novo Fatty Acid Synthesis Controls the Fate between Regulatory T and T Helper 17 Cells. Nature Medicine, 20, 1327-1333. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Peng, H., Lucavs, J., Ballard, D., et al. (2021) Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology, 12, Article 652687. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gaddis, E., Padgett, E., Wu, R., et al. (2021) Atherosclerosis Im-pairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 2387-2398. [Google Scholar] [CrossRef]
|
|
[14]
|
Lochner, M., Berod, L. and Sparwasser, T. (2015) Fatty Acid Metabolism in the Regulation of T Cell Function. Trends in Immunology, 36, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hu, X., Wang, Y., Hao, L., et al. (2015) Sterol Metabolism Controls TH17 Differentiation by Generating Endogenous RORγ Agonists. Nature Chemical Biology, 11, 141-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sen, P., Andrabi, S., Buchacher, T., et al. (2021) Quantitative Ge-nome-Scale Metabolic Modeling of Human CD4+ T Cell Differentiation Reveals Subset-Specific Regulation of Glyco-sphingolipid Pathways. Cell Reports, 37, Article ID: 109973. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, W., Li, P., Cai, J., et al. (2022) Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Frontiers in Immunology, 13, Article 860586. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Son, S.-E., Koh, J.-M. and Im, D.-S. (2022) Free Fatty Acid Receptor 4 (FFA4) Activation Ameliorates Imiquimod-Induced Psoriasis in Mice. International Journal of Molec-ular Sciences, 23, Article No. 4482. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, X., Zhu, X. and Zeng, H. (2023) Fatty Acid Metabolism in Adaptive Immunity. FEBS Journal, 290, 584-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Endo, Y., Asou, H., Matsugae, N., et al. (2015) Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Reports, 12, 1042-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Young, K., Flaherty, S., Woodman, K.M., Sharma-Walia, N. and Reynolds, J.M. (2017) Fatty Acid Synthase Regulates the Pathogenicity of Th17 Cells. Journal of Leukocyte Biology, 102, 1229-1235. [Google Scholar] [CrossRef]
|
|
[23]
|
Hochrein, S.M., Wu, H., Eckstein, M., et al. (2022) The Glucose Transporter GLUT3 Controls T Helper 17 Cell Responses through Glycolytic-Epigenetic Reprogramming. Cell Metabo-lism, 34, 516-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Machacek, M., Saunders, H., Zhang, Z., et al. (2019) Elevated O-GlcNAcylation Enhances Pro-Inflammatory Th17 Function by Altering the Intracellular Lipid Microenvironment. Journal of Biological Chemistry, 294, 8973-8990. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhao, Q., Yu, J., Zhou, H., et al. (2023) Intestinal Dysbiosis Ex-acerbates the Pathogenesis of Psoriasis-Like Phenotype through Changes in Fatty Acid Metabolism. Signal Transduction and Targeted Therapy, 8, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nicholas, D.A., Proctor, E.A., Agrawal, M., et al. (2019) Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metabolism, 30, 447-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kagami, S.-I., Owada, T., Kanari, H., et al. (2009) Protein Geranylgeranylation Regulates the Balance between Th17 Cells and Foxp3+ Regulatory T Cells. International Immunol-ogy, 21, 679-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, C., Yosef, N., Gaublomme, J., et al. (2015) CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell, 163, 1413-1427. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Webb, L., Sengupta, S., Edell, C., et al. (2020) Protein Arginine Methyltransferase 5 Promotes Cholesterol Biosynthesis–Mediated Th17 Responses and Autoimmunity. Journal of Clin-ical Investigation, 130, 1683-1698. [Google Scholar] [CrossRef]
|
|
[30]
|
Dehnavi, S., Sohrabi, N., Sadeghi, M., et al. (2020) Statins and Autoim-munity: State-of-the-Art. Pharmacology & Therapeutics, 214, Article ID: 107614. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Santori, F.R., Huang, P., van de Pavert, S.A., et al. (2015) Identification of Natural RORγ Ligands That Regulate the Development of Lymphoid Cells. Cell Metabolism, 21, 286-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Soroosh, P., Wu, J., Xue, X., et al. (2014) Oxysterols Are Agonist Ligands of RORγt and Drive Th17 Cell Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 111, 12163-12168. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chalmin, F., Rochemont, V., Lippens, C., et al. (2015) Oxysterols Regulate Encephalitogenic CD4+ T Cell Trafficking during Central Nervous System Autoimmunity. Journal of Autoim-munity, 56, 45-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fu, Y., Zou, T., Shen, X., et al. (2020) Lipid Metabolism in Cancer Progression and Therapeutic Strategies. MedComm, 2, 27-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kong, Y., Jiang, J., Huang, Y., et al. (2023) Narciclasine Inhibits Phospholipase A2 and Regulates Phospholipid Metabolism to Ameliorate Psoriasis-Like Dermatitis. Frontiers in Immunology, 13, Article 1094375. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zeng, C., Wen, B., Hou, G., et al. (2017) Lipidomics Profiling Reveals the Role of Glycerophospholipid Metabolism in psoriasis. Gigascience, 6, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lei, L., Yan, B., Liu, P., et al. (2021) Lysophosphatidic Acid Me-diates the Pathogenesis of Psoriasis by Activating Keratinocytes through LPAR5. Signal Transduction and Targeted Therapy, 6, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dong, Y., Duan, X., Liu, Y., et al. (2019) Autotax-in-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice. Inflammation, 42, 1530-1541. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Garris, C.S., Wu, L., Acharya, S., et al. (2013) Defective Sphin-gosine 1-Phosphate Receptor 1 (S1P1) Phosphorylation Exacerbates TH17-Mediated Autoimmune Neuroinflammation. Nature Immunology, 14, 1166-1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shin, S.-H., Cho, K.-A., Hahn, S., et al. (2019) Inhibiting Sphingosine Kinase 2 Derived-Sphingosine-1-Phosphate Ameliorates Psoriasis-Like Skin Disease via Blocking Th17 Differentiation of Na-ïve CD4 T Lymphocytes in Mice. Acta Dermato-Venereologica, 99, 594-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Eken, A., Duhen, R., Singh, A.K., et al. (2017) S1P1 Deletion Dif-ferentially Affects TH17 and Regulatory T Cells. Scientific Reports, 7, Article No. 12905. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tan, S., Feng, X., Liu, Z., et al. (2022) The Pro-Inflammatory Effect of Triglyceride on Human CD4+ T Cells and Experimental Autoimmune Uveitis. Clinical Immunology, 240, Arti-cle ID: 109056. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, X., Jaiswal, A., Costliow, Z., et al. (2022) pH Sensing Controls Tissue Inflammation by Modulating Cellular Metabolism and Endo-Lysosomal Function of Immune Cells. Na-ture Immunology, 23, 1063-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Graham, K., Werner, B., Moyer, K., et al. (2019) DGAT1 Inhib-its Retinol-Dependent Regulatory T Cell Formation and Mediates Autoimmune Encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 116, 3126-3135. [Google Scholar] [CrossRef] [PubMed]
|