|
[1]
|
Ahmed, E. and Alzahrani, A. (2023) SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. International Journal of Molecular Sciences, 24, 4215. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, M., Hu, W., et al. (2022) Advanced Application of Stimuli-Responsive Drug Delivery System for Inflammatory Arthritis Treatment. Materials Today Bio, 14, Article ID: 100223. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Shlobin, N.A. and Dahdaleh, N.S. (2021) Cervical Spine Manifestations of Rheumatoid Arthritis: A Review. Neurosurgical Re-view, 44, 1957-1965. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wu, D., Luo, Y., Li, T., et al. (2022) Sys-temic Complications of Rheumatoid Arthritis: Focus on Pathogenesis and Treatment. Frontiers in Immunology, 13, Arti-cle ID: 1051082. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Enginar, A. and Nur, H. (2023) The Frequency and Factors Affecting Anxiety and Depression in Patients with Rheumatoid Arthritis. Reumatologia, 61, 30-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shams, S., Martinez, J., Dawson, J., et al. (2021) The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Frontiers in Immunology, 12, Article ID: 680043. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Abbasi, M., Mousavi, M., Jamalzehi, S., et al. (2019) Strategies toward Rheumatoid Arthritis Therapy; the Old and the New. Journal of Cellular Physiology, 234, 10018-10031. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ikeda, T., Nishida, A., Yamano, M., et al. (2022) Short-Chain Fatty Acid Receptors and Gut Microbiota as Therapeutic Targets in Metabolic, Immune, and Neurological Diseases. Pharmacology & Therapeutics, 239, Article ID: 108273. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, W., Yu, T., Huang, X., et al. (2020) Intestinal Mi-crobiota-Derived Short-Chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nature Communications, 11, Article No. 4457. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Barbara, G., Barbaro, M., Fuschi, D., et al. (2021) Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Frontiers in Nutrition, 8, Article ID: 718356. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, M., Esch, B., Wagenaar, G., et al. (2018) Pro- and An-ti-Inflammatory Effects of Short Chain Fatty Acids on Immune and Endothelial Cells. European Journal of Pharmacol-ogy, 831, 52-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rogier, C., Wouters, F., van Boheemen, L., et al. (2021) Subclinical Synovitis in Arthralgia: How Often Does It Result in Clinical Arthritis? Reflecting on Starting Points for Disease-Modifying Anti-Rheumatic Drug Treatment. Rheumatology (Oxford), 60, 3872-3878. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Martinsson, K., Dürholz, K., Schett, G., et al. (2022) Higher Serum Levels of Short-Chain Fatty Acids Are Associated with Non-Progression to Arthritis in Individuals at Increased Risk of RA. Annals of the Rheumatic Diseases, 81, 445-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Marazzato, M., Iannuccelli, C., Guzzo, M., et al. (2022) Gut Microbiota Structure and Metabolites, before and after Treatment in Early Rheumatoid Arthritis Patients: A Pilot Study. Frontiers in Medicine, 9, Article ID: 921675. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rosser, E., Piper, C., Matei, D., et al. (2020) Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Me-tabolism, 31, 837-851. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yao, Y., Cai, X., Zheng, Y., et al. (2022) Short-Chain Fatty Acids Regulate B Cells Differentiation via the FFA2 Receptor to Alleviate Rheumatoid Arthritis. British Journal of Pharma-cology, 179, 4315-4329. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hui, W., Yu, D., Cao, Z., et al. (2019) Butyrate Inhibitcollagen-Induced Arthritis via Treg/IL-10/Th17 Axis. International Immunopharmacology, 68, 226-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bai, Y., Li, Y., Marion, T., et al. (2021) Resistant Starch Intake Alleviates Collagen-Induced Arthritis in Mice by Modulating Gut Microbiota and Promoting Concomitant Propionate Production. Journal of Autoimmunity, 116, Article ID: 102564. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
He, J., Chu, Y., Li, J., et al. (2022) Intestinal Butyrate-Metabolizing Species Contribute to Autoantibody Production and Bone Erosion in Rheumatoid Arthritis. Science Advances, 8, eabm1511. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ma, S., Wang, J., He, F., et al. (2022) Sodium Propionate Improves Rheumatoid Arthritis by Inhibiting Surviving Mediated Proliferation of Fibroblast like Synoviocytes by Promoting miR-140-5p. Autoimmunity, 55, 378-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lee, S., Koh, J., Chang, Y., et al. (2019) Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation. The Journal of Immunology, 203, 3199-3208. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Takahashi, D., Hoshina, N., Kabumoto, Y., et al. (2020) Microbiota-Derived Butyrate Limits the Autoimmune Response by Promoting the Differentiation of Follicular Regulatory T Cells. EBioMedicine, 58, Article ID: 102913. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gondalia, S., Wymond, B., Benassi-Evans, B., et al. (2022) Substitution of Refined Conventional Wheat Flour with Wheat High in Resistant Starch Modulates the Intestinal Micro-biota and Fecal Metabolites in Healthy Adults: A Randomized, Controlled Trial. Journal of Nutrition, 152, 1426-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bungau, S., Behl, T., Singh, A., et al. (2021) Targeting Probiotics in Rheumatoid Arthritis. Nutrients, 13, 3376. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fan, Z., Ross, R., Stanton, C., et al. (2021) Lactobacillus casei CCFM1074 Alleviates Collagen-Induced Arthritis in Rats via Balancing Treg/Th17 and Modulating the Metabolites and Gut Microbiota. Frontiers in Immunology, 12, Article ID: 680073. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, J., Kuo, C., Kuo, F., et al. (2019) Fecal Microbiota Trans-plantation: Review and Update. Journal of the Formosan Medical Association, 118, S23-S31. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Marietta, E., Mangalam, A., Taneja, V., et al. (2020) Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Frontiers in Immunology, 11, Article ID: 573079. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zeng, J., Peng, L., Zheng, W., et al. (2020) Fecal Microbiota Transplantation for Rheumatoid Arthritis: A Case Report. Clinical Case Reports, 9, 906-909. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, C., Yi, P., Zhu, M., et al. (2022) Safety and Efficacy of Fecal Mi-crobiota Transplantation for Treatment of Systemic Lupus Erythematosus: An Explorer Trial. Journal of Autoimmunity, 130, Article ID: 102844. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cheng, X., Pi, Z., Zheng, Z., et al. (2022) Combined 16S rRNA Gene Sequencing and Metabolomics to Investigate the Protective Effects of Wu-Tou Decoction on Rheumatoid Arthritis in Rats. Journal of Chromatography B, 1199, Article ID: 123249. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, Y., Liu, L., Luo, J., et al. (2023) Metabolites from Specif-ic Intestinal Bacteria in Vivo Fermenting Lycium barbarum Polysaccharide Improve Collagenous Arthritis in Rats. Inter-national Journal of Biological Macromolecules, 226, 1455-1467. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shan, J., Peng, L., Qian, W., et al. (2018) Integrated Serum and Fecal Metabolomics Study of Collagen-Induced Arthritis Rats and the Therapeutic Effects of the Zushima Tablet. Fron-tiers in Pharmacology, 9, Article No. 891. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yue, M., Tao, Y., Fang, Y., et al. (2019) The Gut Microbiota Mod-ulator Berberine Ameliorates Collagen-Induced Arthritis in Rats by Facilitating the Generation of Butyrate and Adjusting the Intestinal Hypoxia and Nitrate Supply. The FASEB Journal, 33, 12311-12323. [Google Scholar] [CrossRef]
|
|
[34]
|
Pang, J., Ma, S., Xu, X., et al. (2021) Effects of Rhizome of At-ractylodeskoreana (Nakai) Kitam on Intestinal Flora and Metabolites in Rats with Rheumatoid Arthritis. Journal of Eth-nopharmacology, 281, Article ID: 114026. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Qiao, S., Lian, X., Yue, M., et al. (2020) Regulation of Gut Micro-biota Substantially Contributes to the Induction of Intestinal Treg Cells and Consequent Anti-Arthritis Effect of Madecassoside. International Immunopharmacology, 89, Article ID: 107047. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Blaak, E., Canfora, E., Theis, S., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. [Google Scholar] [CrossRef]
|