|
[1]
|
Banday, M.Z., Syed, S.A. and Nissar, S. (2020) Pathophysiology of Diabetes: An Overview. Avicenna Journal of Medi-cine, 10, 174-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ren, Y., Zhang, M., Liu, Y., et al. (2019) Associa-tion of Menopause and Type 2 Diabetes Mellitus. Menopause, 26, 325-330. [Google Scholar] [CrossRef]
|
|
[3]
|
Udagawa, N., Koide, M., Nakamura, M., et al. (2020) Os-teoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Straface, G., Biscetti, F., Pitocco, D., et al. (2011) Assessment of the Genetic Effects of Polymorphisms in the Osteoprotegerin Gene, TNFRSF11B, on Serum Osteoprotegerin Levels and Carotid Plaque Vulnerability. Stroke, 42, 3022-3028. [Google Scholar] [CrossRef]
|
|
[5]
|
Blaščáková, M.M., Mydlár, J., Petrejčíková, E., et al. (2021) Preliminary Results of Ethnic Divergence of G1181C (rs2073618) and C290T (rs9525641) OPG Gene Poly-morphisms in Groups of Postmenopausal Slovak Women. European Review for Medical and Pharmacological Sciences, 25, 2182-2192.
|
|
[6]
|
Nair, S., Bhadricha, H., Patil, A., et al. (2022) Association of OPG and RANKL Gene Polymor-phisms with Bone Mineral Density in Indian Women. Gene, 840, Article ID: 146746. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guo, L., Tang, K., Quan, Z.X., Zhao, Z.H. and Jiang, D.M. (2014) Association between Seven Common OPG Genetic Polymorphisms and Osteoporosis Risk: A Meta-Analysis. DNA and Cell Biology, 33, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Krajcovicova, V., Omelka, R., Durisová, J., et al. (2015) The Effect of A163G Polymorphism in the Osteoprotegerin Gene on Osteoporosis Related Traits in Slovak Postmenopausal Women. Anthropologischer Anzeiger, 72, 311-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Aspray, T.J. and Hill, T.R. (2019) Osteoporosis and the Ageing Skeleton. In: Harris, J. and Korolchuk, V., Eds., Biochemistry and Cell Biology of Ageing: Part II Clinical Science, Springer, Singapore, 453-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Levin, V.A., Jiang, X. and Kagan, R. (2018) Estrogen Therapy for Osteoporosis in the Modern Era. Osteoporosis International, 29, 1049-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Poiana, C. and Capatina, C. (2019) Osteoporosis and Fracture Risk in Patients with Type 2 Diabetes Mellitus. Acta Endocrinological (Buchar), 15, 231-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhao, Y., Wang, H.L., Li, T.T., Yang, F. and Tzeng, C.M. (2020) Bai-calin Ameliorates Dexamethasone-Induced Osteoporosis by Regulation of the RANK/RANKL/OPG Signaling Pathway. Drug Design, Development and Therapy, 14, 195-206. [Google Scholar] [CrossRef]
|
|
[13]
|
Zheng, H.X., Chen, D.J., Zu, Y.X., Wang, E.Z. and Qi, S.S. (2023) Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation. International Journal of Molecular Sciences, 21, Article 5303. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Karim, K., Giribabu, N. and Salleh, N. (2021) Marantodes pumilum Var Alata (Kacip Fatimah) Ameliorates Derangement in RANK/RANKL/OPG Pathway and Reduces Inflammation and Oxidative Stress in the Bone of Estrogen-Deficient Fe-male Rats with Type-2 Diabetes. Phytomedicine, 91, Article ID: 153677. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sun, T., Chen, M., Lin, X., et al. (2014) The Influence of Os-teoprotegerin Genetic Polymorphisms on Bone Mineral Density and Osteoporosis in Chinese Postmenopausal Women. International Immunopharmacology, 22, 200-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, J., Cai, Q., Chen, W., et al. (2022) Relationship between rs7586085, GALNT3 and CCDC170 Gene Polymorphisms and the Risk of Osteoporosis among the Chinese Han Popu-lation. Scientific Reports, 12, Article No. 6089. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sheng, X., Cai, G., Gong, X., Yao, Z. and Zhu, Y. (2017) Common Variants in OPG Confer Risk to Bone Mineral Density Variation and Osteoporosis Fractures. Scientific Re-ports, 7, Article No. 1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Song, J.F., Jing, Z.Z., Hu, W. and Su, Y.X. (2013) Association between Single Nucleotide Polymorphisms of the Osteoprotegerin Gene and Postmenopausal Osteoporosis in Chinese Women. Genetics & Molecular Research, 12, 3279-3285. [Google Scholar] [CrossRef]
|
|
[19]
|
卜淑敏, 程洋子. 绝经后骨量减少女性骨密度的相关因素[J]. 中国老年学杂志, 2018, 38(18): 4445-4447.
|
|
[20]
|
Song, J., Zhang, R., Lv, L., et al. (2020) The Relationship between Body Mass Index and Bone Mineral Density: A Mendelian Randomization Study. Calcified Tissue International, 107, 440-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zolfaroli, I., Ortiz, E., García-Pérez, M.Á., et al. (2021) Positive Association of High-Density Lipoprotein Cholesterol with Lumbar and Femoral Neck Bone Mineral Density in Post-menopausal Women. Maturitas, 147, 41-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Niu, P., Li, H., Liu, D., et al. (2021) Association between HDL-C and Bone Mineral Density: An Cross-Sectional Analysis. International Journal of General Medicine, 2021, 8863-8872. [Google Scholar] [CrossRef]
|
|
[23]
|
Cherny, S.S., Freidin, M.B., Williams, F.M.K. and Livshits, G. (2019) The Analysis of Causal Relationships between Blood Lipid Levels and BMD. PLOS ONE, 14, e0212464. [Google Scholar] [CrossRef]
|