|
[1]
|
Depression. https://www.who.int/news-room/fact-sheets/detail/depression
|
|
[2]
|
Rock, P.L., Roiser, J.P., Riedel, W.J., et al. (2014) Cognitive Impairment in Depression: A Systematic Review and Meta-Analysis. Psychological Medi-cine, 44, 2029-2040. [Google Scholar] [CrossRef]
|
|
[3]
|
Nicholson, P.J. and Wilson, N. (2017) Smart Drugs: Implications for General Practice. British Journal of General Practice, 67, 100-101. [Google Scholar] [CrossRef]
|
|
[4]
|
Hitchcock, C., Gormley, S., Rees, C., Rodrigues, E., Gillard, J., Panesar, I., Wright, I.M., Hammond, E., Watson, P., Werner-Seidler, A. and Dalgleish, T. (2018) A Randomised Con-trolled Trial of Memory Flexibility Training (MemFlex) to Enhance Memory Flexibility and Reduce Depressive Symp-tomatology in Individuals with Major Depressive Disorder. Behaviour Research and Therapy, 110, 22-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lyte, M. (2014) Microbial Endocrinology: Host-Microbiota Neu-roendocrine Interactions Influencing Brain and Behavior. Gut Microbes, 5, 381-389. https://pubmed.ncbi.nlm.nih.gov/24690573/ [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., et al. (2019) The Microbi-ota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Paley, E.L. (2019) Discovery of Gut Bacteria Specific to Alzheimer’s Associated Diseases Is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. Journal of Alz-heimer’s Disease, 72, 319-355. [Google Scholar] [CrossRef]
|
|
[8]
|
McCormick, C.M., Smith, K., Baumbach, J.L., et al. (2020) Adolescent Social Instability Stress Leads to Immediate and Lasting Sex-Specific Changes in the Neuroendocrine-Immune-Gut Axis in Rats. Hormones and Behavior, 126, Article ID: 104845. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, J., Pu, F., Peng, C., et al. (2022) Antibiotic Cocktail-Induced Gut Microbiota Depletion in Different Stages Could Cause Host Cognitive Impairment and Emotional Disorders in Adulthood in Different Manners. Neurobiology of Disease, 170, Article ID: 105757. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Schneider, E., Doll, J.P.K., Schweinfurth, N., et al. (2023) Effect of Short-Term, High-Dose Probiotic Supplementation on Cognition, Related Brain Functions and BDNF in Patients with Depression: A Secondary Analysis of a Randomized Controlled Trial. Journal of Psychiatry & Neuroscience JPN, 48, E23-E33. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2021) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kelly, J.R., Borre, Y., O’Brien, C., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Re-search, 82, 109-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jiang, H., Ling, Z., Zhang, Y., et al. (2015) Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain, Behavior, and Immunity, 48, 186-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Naseribafrouei, A., Hestad, K., Avershina, E., et al. (2014) Correla-tion between the Human Fecal Microbiota and Depression. Neurogastroenterology & Motility, 26, 1155-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ownby, R.L., Crocco, E., Acevedo, A., et al. (2006) Depression and Risk for Alzheimer Disease: Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Archives of General Psychi-atry, 63, 530-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Semkovska, M., Quinlivan, L., O’Grady, T., et al. (2019) Cognitive Function Following a Major Depressive Episode: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 6, 851-861. [Google Scholar] [CrossRef]
|
|
[17]
|
Miskowiak, K.W., Ott, C.V., Petersen, J.Z., et al. (2016) Systematic Review of Randomized Controlled Trials of Candidate Treatments for Cognitive Impairment in Depression and Methodological Challenges in the Field. European Neuropsychopharmacology, 26, 1845-1867. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cattaneo, A., Cattane, N., Galluzzi, S., et al. (2017) Associa-tion of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cogni-tively Impaired Elderly. Neurobiology of Aging, 49, 60-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, L., Wang, Y., Xiayu, X., et al. (2017) Altered Gut Mi-crobiota in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 60, 1241-1257. [Google Scholar] [CrossRef]
|
|
[21]
|
Kapogiannis, D. and Mattson, M.P. (2011) Disrupted Energy Metabo-lism and Neuronal Circuit Dysfunction in Cognitive Impairment and Alzheimer’s Disease. The Lancet Neurology, 10, 187-198. [Google Scholar] [CrossRef]
|
|
[22]
|
Romo-Araiza, A. and Ibarra, A. (2020) Prebiotics and Probi-otics as Potential Therapy for Cognitive Impairment. Medical Hypotheses, 134, Article ID: 109410. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, Y., Wu, Y., Wang, Y., et al. (2017) Antioxidant Proper-ties of Probiotic Bacteria. Nutrients, 9, Article No. 521. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dawood, M.A.O., Koshio, S., Ishikawa, M., et al. (2016) Effects of Die-tary Supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the Growth, Gut Microbiota and Immune Responses of Red Sea Bream, Pagrus Major. Fish & Shellfish Immunology, 49, 275-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Dawood, M.A.O., Koshio, S., Ishikawa, M., et al. (2016) Probiotics as an Environment-Friendly Approach to Enhance Red Sea Bream, Pagrus Major Growth, Immune Response and Oxida-tive Status. Fish & Shellfish Immunology, 57, 170-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Martarelli, D., Verdenelli, M.C., Scuri, S., et al. (2011) Effect of a Probiotic Intake on Oxidant and Antioxidant Parameters in Plasma of Athletes during Intense Exercise Training. Current Microbiology, 62, 1689-1696. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Heneka, M.T., Carson, M.J., El Khoury, J., et al. (2015) Neuroin-flammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405. [Google Scholar] [CrossRef]
|
|
[28]
|
Czirr, E. and Wyss-Coray, T. (2012) The Immunology of Neurodegeneration. Journal of Clinical Investigation, 122, 1156-1163. [Google Scholar] [CrossRef]
|
|
[29]
|
Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Ham-shere, M.L., Pahwa, J.S., et al. (2009) Genome-Wide Association Study Identifies Variants at CLU and PICALM Asso-ciated with Alzheimer’s Disease. Nature Genetics, 41, 1088-1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Abildgaard, A., Elfving, B., Hokland, M., et al. (2017) Probiotic Treatment Reduces Depressive-Like Behaviour in Rats Inde-pendently of Diet. Psychoneuroendocrinology, 79, 40-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Holmes, C., Cunningham, C., Zotova, E., et al. (2009) Sys-temic Inflammation and Disease Progression in Alzheimer Disease. Neurology, 73, 768-774. [Google Scholar] [CrossRef]
|
|
[32]
|
Poluektova, E., Yunes, R. and Danilenko, V. (2021) The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients, 13, Article No. 1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Garcez, M.L., Tan, V.X., Heng, B., et al. (2020) Sodium Butyrate and Indole-3-Propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-Induced Human Primary As-trocytes. International Journal of Tryptophan Research, 13, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, H., Lee, I.-S., Braun, C., et al. (2016) Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. Journal of Neurogastroenterolo-gy and Motility, 22, 589-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mehrabadi, S. and Sadr, S.S. (2020) Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer’s Disease Model of Rats. Iranian Bio-medical Journal, 24, 220-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Athari Nik Azm, S., Djazayeri, A., Safa, M., et al. (2018) Lactobacilli and Bifidobacteria Ameliorate Memory and Learning Deficits and Oxidative Stress in β-Amyloid (1-42) Injected Rats. Applied Physiology, Nutrition, and Metabolism, 43, 718-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Desbonnet, L., Garrett, L., Clarke, G., et al. (2008) The Probiotic Bifidobacteria Infantis: An Assessment of Potential Antidepressant Properties in the Rat. Journal of Psychiatric Research, 43, 164-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hsiao, E.Y., McBride, S.W., Hsien, S., et al. (2013) Micro-biota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell, 155, 1451-1463. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cornara, L., Borghesi, B., Canali, C., et al. (2013) Smart Drugs: Green Shuttle or Real Drug? International Journal of Legal Medicine, 127, 1109-1123. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bingham, K.S., Flint, A.J. and Mulsant, B.H. (2019) Management of Late-Life Depression in the Context of Cognitive Impairment: A Review of the Recent Literature. Current Psychiatry Reports, 21, 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Devanand, D.P., Pelton, G.H., D’Antonio, K., et al. (2018) Donepezil Treatment in Patients with Depression and Cognitive Impairment on Stable Antidepressant Treatment: A Ran-domized Controlled Trial. The American Journal of Geriatric Psychiatry, 26, 1050-1060. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rudzki, L., Ostrowska, L., Pawlak, D., et al. (2019) Probiotic Lactobacillus plantarum 299v Decreases Kynurenine Concentration and Improves Cognitive Functions in Patients with Major Depression: A Double-Blind, Randomized, Placebo Controlled Study. Psychoneuroendocrinology, 100, 213-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., et al. (2016) Clinical and Metabolic Response to Probiotic Administration in Patients with Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrition (Burbank, Los Angeles County, Calif.), 32, 315-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Amirani, E., Milajerdi, A., Mirzaei, H., et al. (2020) The Effects of Probiotic Supplementation on Mental Health, Biomarkers of Inflammation and Oxidative Stress in Patients with Psychiat-ric Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complementary Therapies in Medicine, 49, Article ID: 102361. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sun, J., Xu, J., Ling, Y., et al. (2019) Fecal Microbiota Transplan-tation Alleviated Alzheimer’s Disease-Like Pathogenesis in app/ps1 Transgenic Mice. Translational Psychiatry, 9, Arti-cle No. 189. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xiao, W., Su, J., Gao, X., et al. (2022) The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Micro-biome, 10, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|