[1]
|
郑师章, 呈千红, 等, 编著. 普通生态学原理、方法和应用[M]. 上海: 复旦大学出版社, 1994.
|
[2]
|
Gonz'alez-Olivares, E. and Ramos-Jiliberto, R. (2003) Dynamic Consequences of Prey Refuges
in a Simple Model System: More Prey, Fewer Predators and Enhanced Stability. Ecological
Modelling, 166, 135-146. https://doi.org/10.1016/S0304-3800(03)00131-5
|
[3]
|
Zhou, Y., Sun, W., Song, Y., Zheng, Z., Lu, J. and Chen, S. (2019) Hopf Bifurcation Analysis
of a Predator-Prey Model with Holling-II Type Functional Response and a Prey Refuge.
Nonlinear Dynamics, 97, 1439-1450. https://doi.org/10.1007/s11071-019-05063-w
|
[4]
|
Xiang, C., Huang J. andWang, H. (2023) Bifurcations in Holling-Tanner Model with Generalist
Predator and Prey Refuge. Journal of Differential Equations, 343, 495-529.
https://doi.org/10.1016/j.jde.2022.10.018
|
[5]
|
Collings, J.B. (1995) Bifurcation and Stability Analysis of a Temperature-Dependent Mite
Predator-Prey Interaction Model Incorporating a Prey Refuge. Bulletin of Mathematical Biol-
ogy, 57, 63-76. https://doi.org/10.1016/0092-8240(94)00024-7
|
[6]
|
Chen, F., Chen, L. and Xie, X. (2009) On a Leslie-Gower Predator-Prey Model Incorporating
a Prey Refuge. Nonlinear Analysis-Real World Applications, 10, 2905-2908.
https://doi.org/10.1016/j.nonrwa.2008.09.009
|
[7]
|
Ko, W. and Ryu, K. (2006) Qualitative Analysis of a Predator-Prey Model with Holling Type
II Functional Response Incorporating a Prey Refuge. Journal of Differential Equations, 231,
534-550. https://doi.org/10.1016/j.jde.2006.08.001
|
[8]
|
Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H. and Li, Z. (2009) Effects of Prey Refuges on
a Predator-Prey Model with a Class of Functional Responses: The Role of Refuges (Review).
Mathematical Biosciences, 218, 73-79. https://doi.org/10.1016/j.mbs.2008.12.008
|