|
[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gofton, T.E. and Young, G.B. (2012) Sepsis-Associated Encephalopathy. Nature Reviews Neurology, 8, 557-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ebersoldt, M., Sharshar, T. and Annane, D. (2007) Sep-sis-Associated Delirium. Intensive Care Medicine, 33, 941-950. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mazeraud, A., Righy, C., Bouchereau, E., et al. (2020) Sep-tic-Associated Encephalopathy: A Comprehensive Review. Neurotherapeutics, 17, 392-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gu, M., Mei, X. and Zhao, Y. (2021) Sepsis and Cerebral Dys-function: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Po-tential Therapeutic Approaches. Neurotoxicity Research, 39, 489-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tauber, S.C., Djukic, M., Gossner, J., et al. (2021) Sep-sis-Associated Encephalopathy and Septic Encephalitis: An Update. Expert Review of Anti-Infective Therapy, 19, 215-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Huo, L., Liu, C., Yuan, Y., et al. (2023) Pharmacological In-hibition of Ferroptosis as a Therapeutic Target for Sepsis-Associated Organ Damage. European Journal of Medicinal Chemistry, 257, Article ID: 115438. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lei, X.L., Zhao, G.Y., Guo, R. and Cui, N. (2022) Ferroptosis in Sepsis: The Mechanism, the Role and the Therapeutic Potential. Frontiers in Immunology, 13, Article ID: 956361. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, Z., Zhang, C., Liu, Y., et al. (2022) Diagnostic and Predictive Values of Ferroptosis-Related Genes in Child Sepsis. Frontiers in Immunology, 13, Article ID: 881914. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wei, X., Jiang, W., Zeng, J., et al. (2022) Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy by Promoting Ferroptosis through Regulating miR-9-5p/TFRC and GOT1 Axis. Molecular Neurobiology, 59, 1954-1969. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, Q., Wu, J., Zhang, X., et al. (2021) Iron Homeostasis and Disorders Revisited in the Sepsis. Free Radical Biology and Medicine, 165, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Sur-viving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Seymour, C.W., Gesten, F., Prescott, H.C., et al. (2017) Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. New England Journal of Medicine, 376, 2235-2244. [Google Scholar] [CrossRef]
|
|
[14]
|
Im, Y., Kang, D., Ko, R., et al. (2022) Time-to-Antibiotics and Clinical Outcomes in Patients with Sepsis and Septic Shock: A Prospective Nationwide Multi-center Cohort Study. Critical Care, 26, Article No. 19. [Google Scholar] [CrossRef]
|
|
[15]
|
Liu, V.X., Fielding-Singh, V., Greene, J.D., et al. (2017) The Timing of Early Antibiotics and Hospital Mortality in Sepsis. American Journal of Respiratory and Critical Care Medi-cine, 196, 856-863. [Google Scholar] [CrossRef]
|
|
[16]
|
Liang, H., Song, H., Zhai, R., et al. (2021) Corticosteroids for Treating Sepsis in Adult Patients: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 12, Article ID: 709155. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, R., Sun, X., Li, Y., et al. (2019) Low-Dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalo-pathy. Neuroscience, 419, 83-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kruger, P., Bailey, M., Bellomo, R., et al. (2013) A Mul-ticenter Randomized Trial of Atorvastatin Therapy in Intensive Care Patients with Severe Sepsis. American Journal of Respiratory and Critical Care Medicine, 187, 743-750. [Google Scholar] [CrossRef]
|
|
[19]
|
Lee, C.C., Lee, M.G., Hsu, T.C., et al. (2018) A Popula-tion-Based Cohort Study on the Drug-Specific Effect of Statins on Sepsis Outcome. Chest, 153, 805-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kruger, P.S. and Terblanche, M. (2017) Statins in Patients with Sepsis and ARDS: Is It over? No. Intensive Care Medicine, 43, 675-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Reis, P.A., Alexandre, P.C.B., Avila, J.C., et al. (2017) Statins Prevent Cognitive Impairment after Sepsis by Reverting Neuroinflammation, and Microcirculatory/Endothelial Dysfunc-tion. Brain, Behavior, and Immunity, 60, 293-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Morandi, A., Hughes, C.G., Thompson, J.L., et al. (2014) Statins and Delirium during Critical Illness. Critical Care Medicine, 42, 1899-1909. [Google Scholar] [CrossRef]
|
|
[23]
|
Snow, T., Littlewood, S., Corredor, C., et al. (2021) Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Puri-fication, 50, 462-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
刘宁宁, 乔小燕. 血液净化对脓毒症相关性脑病患者神经元特异性烯醇化酶水平的影响[J]. 右江医学, 2019, 47(4): 271-274.
|
|
[25]
|
安媛, 王义, 王娟, 等. 血液净化对脓毒性脑病神经元特异性烯醇化酶的影响[J]. 昆明医科大学学报, 2016, 37(2): 76-79.
|
|
[26]
|
Mei, B., Li, J. and Zuo, Z. (2021) Dexmedetomidine Attenuates Sepsis-Associated Inflammation and Encephalopathy via Central α2A Adrenoceptor. Brain, Behavior, and Immunity, 91, 296-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
徐猛, 王子文, 谢叙, 等. 不同剂量右美托咪定对脓毒症相关性脑病患者炎症反应、免疫功能及脑功能的影响[J]. 实用医学杂志, 2022, 38(20): 2580-2584.
|
|
[28]
|
Lewis, K., Alshamsi, F., Carayannopoulos, K.L., et al. (2022) Dexmedetomi-dine vs Other Sedatives in Critically Ill Mechanically Ventilated Adults: A Systematic Review and Meta-Analysis of Randomized Trials. Intensive Care Medicine, 48, 811-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zanotti, S., Kumar, A. and Kumar, A. (2002) Cytokine Modula-tion in Sepsis and Septic Shock. Expert Opinion on Investigational Drugs, 11, 1061-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Morris, P.E., Zeno, B., Bernard, A.C., et al. (2012) A Place-bo-Controlled, Double-Blind, Dose-Escalation Study to Assess the Safety, Tolerability and Pharmacokinet-ics/Pharmacodynamics of Single and Multiple Intravenous Infusions of AZD9773 in Patients with Severe Sepsis and Septic Shock. Critical Care, 16, R31. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bernard, G.R., Francois, B., Mira, J., et al. (2014) Evaluating the Efficacy and Safety of Two Doses of the Polyclonal Anti-Tumor Necrosis Factor-α Fragment Antibody AZD9773 in Adult Patients with Severe Sepsis and/or Septic Shock. Critical Care Medicine, 42, 504-511. [Google Scholar] [CrossRef]
|
|
[32]
|
RECOVERY Collaborative Group (2021) Tocilizumab in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial. The Lancet, 397, 1637-1645.
|
|
[33]
|
Xie, Z.X., Xu, M., Xie, J., et al. (2022) Inhibition of Ferroptosis Attenuates Gluta-mate Excitotoxicity and Nuclear Autophagy in a CLP Septic Mouse Model. Shock, 57, 694-702.
|
|
[34]
|
Zoremba, N. and Coburn, M. (2019) Acute Confusional States in Hospital. Deutsches Ärzteblatt International, 116, 101-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Burton, J.K., Craig, L.E., Yong, S.Q., et al. (2021) Non-Pharmacological Interventions for Preventing Delirium in Hospitalised Non-ICU Patients. Cochrane Database of Systematic Reviews, 7, D13307. [Google Scholar] [CrossRef]
|
|
[36]
|
Li, N., Zhang, E., Zhang, J., et al. (2020) Therapeutic Ef-fects of Recombinant Human Brain Natriuretic Peptide on Sepsis-Associated Encephalopathy in Mice. International Im-munopharmacology, 81, Article ID: 106280. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
李楠, 张二飞, 张静, 等. 重组人脑利钠肽对脓毒症相关性脑病小鼠神经细胞凋亡的治疗作用[J]. 现代生物医学进展, 2020, 20(7): 1217-1223.
|
|
[38]
|
汪利宗, 蒋静涵, 童祝凤, 等. rhBNP治疗脓毒症相关性脑病患者对S-100β、NSE水平的影响[J]. 湖南师范大学学报(医学版), 2021, 18(5): 120-123.
|
|
[39]
|
Kicman, A. and Toczek, M. (2020) The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. International Journal of Molecular Sciences, 21, Article No. 6740. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ruiz-Valdepeñas, L., Martínez-Orgado, J.A., Benito, C., et al. (2011) Cannabidiol Reduces Lipopolysaccharide-Induced Vascular Changes and Inflammation in the Mouse Brain: An Intravital Microscopy Study. Journal of Neuroinflammation, 8, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Fouda, M.A., Fathy, M.Y., Fernandez, R., et al. (2022) An-ti-Inflammatory Effects of Cannabidiol against Lipopolysaccharides in Cardiac Sodium Channels. British Journal of Pharmacology, 179, 5259-5272. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Cassol Jr., O.J., Comim, C.M., Silva, B.R., et al. (2010) Treatment with Cannabidiol Reverses Oxidative Stress Parameters, Cognitive Impairment and Mortality in Rats Submitted to Sepsis by Cecal Ligation and Puncture. Brain Research, 1348, 128-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Poles, M.Z., Naszai, A., Gulacsi, L., et al. (2021) Kynurenic Acid and Its Synthetic Derivatives Protect against Sepsis-Associated Neutrophil Activation and Brain Mitochondrial Dysfunction in Rats. Frontiers in Immunology, 12, Article ID: 717157. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yan, X., Yang, K., Xiao, Q., et al. (2022) Central Role of Micro-glia in Sepsis-Associated Encephalopathy: From Mechanism to Therapy. Frontiers in Immunology, 13, Article ID: 929316. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jin, P., Deng, S., Tian, M., et al. (2021) INT-777 Pre-vents Cognitive Impairment by Activating Takeda G Protein- coupled Receptor 5 (TGR5) and Attenuating Neuroinflam-mation via cAMP/PKA/CREB Signaling Axis in a Rat Model of Sepsis. Experimental Neurology, 335, Article ID: 113504. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Castro, L.V.G., Gonçalves-De-Albuquerque, C.F. and Silva, A.R. (2022) Polarization of Microglia and Its Therapeutic Potential in Sepsis. International Journal of Molec-ular Sciences, 23, Article No. 4925. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Dumbuya, J.S., Li, S., Liang, L., et al. (2022) Effects of Hydrogen-Rich Saline in Neuroinflammation and Mitochondrial Dysfunction in Rat Model of Sepsis-Associated Encephalopathy. Jour-nal of Translational Medicine, 20, Article No. 546. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Han, Q., Bai, Y., Zhou, C., et al. (2023) Effect of Molecular Hydrogen Treatment on Sepsis-Associated Encephalopathy in Mice Based on Gut Microbiota. CNS Neuroscience & Therapeutics, 29, 633-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhang, Y., Chen, J., Wu, H., et al. (2023) Hydrogen Regulates Mitochon-drial Quality to Protect Glial Cells and Alleviates Sepsis-Associated Encephalopathy by Nrf2/YY1 Complex Promoting HO-1 Expression. International Immunopharmacology, 118, Article ID: 110009. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Dumbuya, J.S., Chen, X., Du, J., et al. (2023) Hydrogen-Rich Saline Regulates NLRP3 Inflammasome Activation in Sepsis-Associated Encephalopathy Rat Model. International Im-munopharmacology, 123, Article ID: 110758. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Xie, J., Zhao, Z., Li, P., et al. (2021) Senkyunolide I Protects against Sepsis-Associated Encephalopathy by Attenuating Sleep Deprivation in a Murine Model of Cecal Ligation and Puncture. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6647258. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
郑述铭, 林新锋, 杨莉, 等. 基于p38 MAPK信号通路探讨洋川芎内酯I对脓毒性脑病大鼠的脑保护作用[J]. 中药新药与临床药理, 2019, 30(9): 1083-1087.
|
|
[53]
|
Ding, H., Li, Y., Chen, S., et al. (2022) Fisetin Ameliorates Cognitive Impairment by Activating Mitophagy and Suppressing Neuroin-flammation in Rats with Sepsis-Associated Encephalopathy. CNS Neuroscience & Therapeutics, 28, 247-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Du, L., Wu, Y., Jia, Q., et al. (2023) Autophagy Suppresses Ferroptosis by Degrading TFR1 to Alleviate Cognitive Dysfunction in Mice with SAE. Cellular and Molecular Neurobiology, 43, 3605-3622. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Xie, Z., Xu, M., Xie, J., et al. (2022) Inhibition of Ferroptosis Attenuates Glutamate Excitotoxicity and Nuclear Autophagy in a CLP Septic Mouse Model. Shock, 57, 694-702. [Google Scholar] [CrossRef]
|
|
[56]
|
Wang, J., Zhu, Q., Wang, Y., et al. (2022) Irisin Protects against Sepsis-Associated Encephalopathy by Suppressing Ferroptosis via Activation of the Nrf2/GPX4 Signal Axis. Free Radical Biology and Medicine, 187, 171-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Yin, J., Shen, Y., Si, Y., et al. (2020) Knockdown of Long Non-Coding RNA SOX2OT Downregulates SOX2 to Improve Hippocampal Neurogenesis and Cognitive Func-tion in a Mouse Model of Sepsis-Associated Encephalopathy. Journal of Neuroinflammation, 17, Article No. 320. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xi, S., Wang, Y., Wu, C., et al. (2022) Intestinal Epithelial Cell Exosome Launches IL-1β-Mediated Neuron Injury in Sepsis-Associated Encephalopathy. Frontiers in Cellular and In-fection Microbiology, 11, Article ID: 783049. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chen, Y., Hu, Y., Li, X., et al. (2022) Clinical Features and Fac-tors Associated with Sepsis-Associated Encephalopathy in Children: Retrospective Single-Center Clinical Study. Fron-tiers in Neurology, 13, Article ID: 838746. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chen, J., Shi, X., Diao, M., et al. (2020) A Retrospective Study of Sepsis-Associated Encephalopathy: Epidemiology, Clinical Features and Adverse Outcomes. BMC Emergency Medicine, 20, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Iwashyna, T.J., Ely, E.W., Smith, D.M., et al. (2010) Long-Term Cognitive Impairment and Functional Disability among Survivors of Severe Sepsis. JAMA, 304, 1787-1794. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, H.E., Kabeto, M.M., Gray, M., et al. (2021) Trajectory of Cognitive Decline after Sepsis. Critical Care Medicine, 49, 1083-1094. [Google Scholar] [CrossRef]
|
|
[63]
|
Kaur, J., Singhi, P., Singhi, S., et al. (2016) Neurodevel-opmental and Behavioral Outcomes in Children with Sepsis-Associated Encephalopathy Admitted to Pediatric Intensive Care Unit: A Prospective Case Control Study. Journal of Child Neurology, 31, 683-690. [Google Scholar] [CrossRef] [PubMed]
|