|
[1]
|
Van Baar, M.E., Dekker, J., Lemmens, J.A., et al. (1998) Pain and Disability in Patients with Osteoarthritis of Hip or Knee: The Relationship with Articular, Kinesiological, and Psychological Characteristics. The Journal of Rheumatology, 25, 125-133.
|
|
[2]
|
Lawrence, R.C., Felson, D.T., Helmick, C.G., et al. (2008) Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States. Part II. Arthritis & Rheumatology, 58, 26-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dieppe, P.A. and Lohmander, L.S. (2005) Pathogenesis and Management of Pain in Osteoarthritis. The Lancet, 365, 965-973. [Google Scholar] [CrossRef]
|
|
[4]
|
Yang, X., Chen, L., Xu, X., et al. (2001) TGF-Beta/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Are Required for Maintaining Articular Cartilage. Journal of Cell Biology, 153, 35-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shen, J., Li, J., Wang, B., et al. (2013) Deletion of the Transforming Growth Factor Beta Receptor Type II Gene in Articular Chondrocytes Leads to a Progressive Osteoarthritis-Like Phenotype in Mice. Arthritis & Rheumatology, 65, 3107-3119. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, M., Tang, D., Wu, Q., et al. (2009) Activation of Beta-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult Beta-Catenin Conditional Activation Mice. Journal of Bone and Mineral Research, 24, 12-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, A.C., Seeto, B.L., Bartoszko, J.M., et al. (2009) Modulating Hedgehog Signaling Can Attenuate the Severity of Osteoarthritis. Nature Medicine, 15, 1421-1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Saito, T., Fukai, A., Mabuchi, A., et al. (2010) Transcriptional Regulation of Endochondral Ossification by HIF-2alpha during Skeletal Growth and Osteoarthritis Development. Nature Medicine, 16, 678-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, S., Kim, J., Ryu, J.H., et al. (2010) Hypoxia-Inducible Factor-2alpha Is a Catabolic Regulator of Osteoarthritic Cartilage Destruction. Nature Medicine, 16, 687-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, D., Shen, J., Zhao, W., et al. (2017) Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism. Bone Research, 5, Article No. 16044. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Miller, J., Horner, A., Stacy, T., et al. (2002) The Core-Binding Factor Beta Subunit Is Required for Bone Formation and Hematopoietic Maturation. Nature Genetics, 32, 645-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, W., Ma, J., Zhu, G., et al. (2014) Cbfbeta Deletion in Mice Recapitulates Cleidocranial Dysplasia and Reveals Multiple Functions of Cbfbeta Required for Skeletal Development. Proceedings of the National Academy of Sciences of the United States of America, 111, 8482-8487. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lim, K.E., Park, N.R., Che, X., et al. (2015) Core Binding Factor Beta of Osteoblasts Maintains Cortical Bone Mass via Stabilization of Runx2 in Mice. Journal of Bone and Mineral Research, 30, 715-722. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Qin, X., Jiang, Q., Matsuo, Y., et al. (2015) Cbfb Regulates Bone Development by Stabilizing Runx Family Proteins. Journal of Bone and Mineral Research, 30, 706-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jiang, Q., Qin, X., Kawane, T., et al. (2016) Cbfb2 Isoform Dominates More Potent Cbfb1 and Is Required for Skeletal Development. Journal of Bone and Mineral Research, 31, 1391-1404. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Baker, K., Grainger, A., Niu, J., et al. (2010) Relation of Synovitis to Knee Pain Using Contrast-Enhanced MRIs. Annals of the Rheumatic Diseases, 69, 1779-1783. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hill, C, L., Hunter, D, J., Niu, J., et al. (2007) Synovitis Detected on Magnetic Resonance Imaging and Its Relation to Pain and Cartilage Loss in Knee Osteoarthritis. Annals of the Rheumatic Diseases, 66, 1599-1603. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Loeser, R.F., Goldring, S.R., Scanzello, C.R., et al. (2012) Osteoarthritis: A Disease of the Joint as an Organ. Arthritis & Rheumatology, 64, 1697-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Goldring, M.B., Otero, M., Plumb, D.A., et al. (2011) Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge upon MMP-13 Regulation in Osteoarthritis. European Cells & Materials, 21, 202-220. [Google Scholar] [CrossRef]
|
|
[20]
|
Goldring, M.B. (2000) The Role of the Chondrocyte in Osteoarthritis. Arthritis & Rheumatology, 43, 1916-1926. [Google Scholar] [CrossRef]
|
|
[21]
|
Higashikawa, A., Saito, T., Ikeda, T., et al. (2009) Identification of the Core Element Responsive to Runt-Related Transcription Factor 2 in the Promoter of Human Type X Collagen Gene. Arthritis & Rheumatology, 60, 166-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kamekura, S., Kawasaki, Y., Hoshi, K., et al. (2006) Contribution of Runt-Related Transcription Factor 2 to the Pathogenesis of Osteoarthritis in Mice after Induction of Knee Joint Instability. Arthritis & Rheumatology, 54, 2462-2470. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dong, Y.F., Soung, D.Y., Schwarz, E.M., et al. (2006) Wnt Induction of Chondrocyte Hypertrophy through the Runx2 Transcription Factor. Journal of Cellular Physiology, 208, 77-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Akiyama, H., Lyons, J.P., Mori-Akiyama, Y., et al. (2004) Interactions between Sox9 and Beta-Catenin Control Chondrocyte Differentiation. Genes & Development, 18, 1072-1087. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hill, T.P., Spater, D., Taketo, M.M., et al. (2005) Canonical Wnt/Beta-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes. Developmental Cell, 8, 727-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yan, D., Chen, D. and Im, H.J. (2012) Fibroblast Growth Factor-2 Promotes Catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 Axis That Coordinates with the PKCdelta Pathway in Human Articular Chondrocytes. Journal of Cellular Biochemistry, 113, 2856-2865. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Orito, K., Koshino, T. and Saito, T. (2003) Fibroblast Growth Factor 2 in Synovial Fluid from an Osteoarthritic Knee with Cartilage Regeneration. Journal of Orthopaedic Science, 8, 294-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Day, T.F., Guo, X., Garrett-Beal, L., et al. (2005) Wnt/Beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Developmental Cell, 8, 739-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Van Den Berg, W.B. (2011) Osteoarthritis Year 2010 in Review: Pathomechanisms. Osteoarthritis Cartilage, 19, 338-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tchetina, E.V. (2011) Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis. Arthritis, 2011, Article ID: 683970. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Scanzello, C.R., Umoh, E., Pessler, F., et al. (2009) Local Cytokine Profiles in Knee Osteoarthritis: Elevated Synovial Fluid Interleukin-15 Differentiates Early from End-Stage Disease. Osteoarthritis Cartilage, 17, 1040-1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Scanzello, C.R. and Goldring, S.R. (2012) The Role of Synovitis in Osteoarthritis Pathogenesis. Bone, 51, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ling, S.M., Patel, D.D., Garnero, P., et al. (2009) Serum Protein Signatures Detect Early Radiographic Osteoarthritis. Osteoarthritis Cartilage, 17, 43-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Endres, M., Andreas, K., Kalwitz, G., et al. (2010) Chemokine Profile of Synovial Fluid from Normal, Osteoarthritis and Rheumatoid Arthritis Patients: CCL25, CXCL10 and XCL1 Recruit Human Subchondral Mesenchymal Progenitor Cells. Osteoarthritis Cartilage, 18, 1458-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ellman, M.B., Yan, D., Ahmadinia, K., et al. (2013) Fibroblast Growth Factor Control of Cartilage Homeostasis. Journal of Cellular Biochemistry, 114, 735-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chia, S.L., Sawaji, Y., Burleigh, A., et al. (2009) Fibroblast Growth Factor 2 Is an Intrinsic Chondroprotective Agent That Suppresses ADAMTS-5 and Delays Cartilage Degradation in Murine Osteoarthritis. Arthritis & Rheumatology, 60, 2019-2027. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jones, S.E. and Jomary, C. (2002) Secreted Frizzled-Related Proteins: Searching for Relationships and Patterns. Bioessays, 24, 811-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Komori, T., Yagi, H., Nomura, S., et al. (1997) Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation Owing to Maturational Arrest of Osteoblasts. Cell, 89, 755-764. [Google Scholar] [CrossRef]
|
|
[39]
|
Shibata, S., Suda, N., Yoda, S., et al. (2004) Runx2-Deficient Mice Lack Mandibular Condylar Cartilage and Have Deformed Meckel’s Cartilage. Anatomy and Embryology (Berl), 208, 273-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lee, B., Thirunavukkarasu, K., Zhou, L., et al. (1997) Missense Mutations Abolishing DNA Binding of the Osteoblast-Specific Transcription Factor OSF2/CBFA1 in Cleidocranial Dysplasia. Nature Genetics, 16, 307-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Liao, L., Zhang, S., Zhou, G.Q., et al. (2019) Deletion of Runx2 in Condylar Chondrocytes Disrupts TMJ Tissue Homeostasis. Journal of Cellular Physiology, 234, 3436-3444. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liao, L., Zhang, S., Gu, J., et al. (2017) Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Scientific Reports, 7, Article No. 2371. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Brophy, R.H., Rai, M.F., Zhang, Z., et al. (2012) Molecular Analysis of Age and Sex-Related Gene Expression in Meniscal Tears with and without a Concomitant Anterior Cruciate Ligament Tear. The Journal of Bone and Joint Surgery. American Volume, 94, 385-393. [Google Scholar] [CrossRef]
|
|
[44]
|
Englund, M., Roemer, F.W., Hayashi, D., et al. (2012) Meniscus Pathology, Osteoarthritis and the Treatment Controversy. Nature Reviews Rheumatology, 8, 412-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Muhammad, H., Schminke, B., Bode, C., et al. (2014) Human Migratory Meniscus Progenitor Cells Are Controlled via the TGF-Beta Pathway. Stem Cell Reports, 3, 789-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hellio, L.G.M., Vignon, E., Otterness, I.G., et al. (2001) Early Changes in Lapine Menisci during Osteoarthritis Development: Part I: Cellular and Matrix Alterations. Osteoarthritis Cartilage, 9, 56-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Fox, A.J., Wanivenhaus, F., Burge, A.J., et al. (2015) The Human Meniscus: A Review of Anatomy, Function, Injury, and Advances in Treatment. Clinical Anatomy, 28, 269-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hunziker, E.B. (2002) Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects. Osteoarthritis Cartilage, 10, 432-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Petersen, W., Pufe, T., Starke, C., et al. (2005) Locally Applied Angiogenic Factors—A New Therapeutic Tool for Meniscal Repair. Annals of Anatomy, 187, 509-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cao, J., Han, X., Qi, X., et al. (2018) MiR-204-5p Inhibits the Occurrence and Development of Osteoarthritis by Targeting Runx2. International Journal of Molecular Medicine, 42, 2560-2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ling, M., Huang, P., Islam, S., et al. (2017) Epigenetic Regulation of Runx2 Transcription and Osteoblast Differentiation by Nicotinamide Phosphoribosyltransferase. Cell & Bioscience, 7, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Blaney, D.E., Van Der Kraan, P.M. and Van Den Berg, W.B. (2007) TGF-Beta and Osteoarthritis. Osteoarthritis Cartilage, 15, 597-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lanske, B., Karaplis, A.C., Lee, K., et al. (1996) PTH/PTHrP Receptor in Early Development and Indian Hedgehog-Regulated Bone Growth. Science, 273, 663-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Mak, K.K., Kronenberg, H.M., Chuang, P.T., et al. (2008) Indian Hedgehog Signals Independently of PTHrP to Promote Chondrocyte Hypertrophy. Development, 135, 1947-1956. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Nakamura, T., Aikawa, T., Iwamoto-Enomoto, M., et al. (1997) Induction of Osteogenic Differentiation by Hedgehog Proteins. Biochemical and Biophysical Research Communications, 237, 465-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhou, J., Chen, Q., Lanske, B., et al. (2014) Disrupting the Indian Hedgehog Signaling Pathway in Vivo Attenuates Surgically Induced Osteoarthritis Progression in Col2a1-CreERT2; Ihhfl/Fl Mice. Arthritis Research & Therapy, 16, R11. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Yang, Y. (2003) Wnts and Wing: Wnt Signaling in Vertebrate Limb Development and Musculoskeletal Morphogenesis. Birth Defects Research Part C: Embryo Today, 69, 305-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Held, A., Glas, A., Dietrich, L., et al. (2018) Targeting Beta-Catenin Dependent Wnt Signaling via Peptidomimetic Inhibitors in Murine Chondrocytes and OA Cartilage. Osteoarthritis Cartilage, 26, 818-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Bertrand, J., Kraft, T., Gronau, T., et al. (2020) BCP Crystals Promote Chondrocyte Hypertrophic Differentiation in OA Cartilage by Sequestering Wnt3a. Annals of the Rheumatic Diseases, 79, 975-984. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Shi, S., Man, Z. and Sun, S. (2022) Wnt3a Knockdown Promotes Collagen Type II Expression in Rat Chondrocytes. Experimental and Therapeutic Medicine, 24, Article No. 526. [Google Scholar] [CrossRef] [PubMed]
|