[1]
|
黄炳华. 埃米特矩阵和集成网络的稳定性[J]. 固体电子学研究和进展, 1997, 17(3): 235-241.
|
[2]
|
黄炳华. 埃米特矩阵的第二形式及其应用[J]. 通信学报, 1999, 2: 53-57.
|
[3]
|
黄炳华. 用埃米特式计算复功率[J]. 电路与系统学报, 1999, 4(2): 45-52.
|
[4]
|
黄炳华, 卫雅芬, 黄莹. 非线性振荡每一谐波成份的复功率守恒[A]. 第23届电路与系统学术年会论文集[C], 桂林电子科技大学, 2011.
|
[5]
|
S.-M. Yu, S.-S. Qiu and Q.-H. Lin. New results of study on generating multiple-scroll chaotic attractors. Science in China (Series F), 2003, 46(2): 104-115.
|
[6]
|
M. P. Kennedy. Chaos in the colpitts oscillator. IEEE Transactions on CAS-1, 1994, 41(11): 771-774.
|
[7]
|
G. M. Maggio, O. De Feo and M. P. Kennedy. Nonlinear analysis of the colpitts oscillator and applications to design. IEEE Transactions on CAS, 1999, 46(9): 1118-1130.
|
[8]
|
D. D. Ganji, M. Esmaeilpour and S. Soleimani. Approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Computer Mathematics, 2010, 87(9): 2014-2023.
|
[9]
|
Y. M. Chen, J. K. Liu. A new method based on the harmonic balance method for nonlinear oscillators. Physics Letters A, 2007, 368(5): 371-378.
|
[10]
|
黄炳华, 黄新民, 张海明. 各类自激振荡的基波分析法[J]. 固体电子学研究和进展, 2005, 25(1): 102-107.
|
[11]
|
黄炳华, 黄新民, 王庆华. 用基波平衡原理分析非线性电子网络的稳定性[J]. 固体电子学研究和进展, 2006, 26(1): 43- 48.
|
[12]
|
黄炳华, 黄新民, 韦善革. 用基波平衡原理分析非线性振荡与混沌[J]. 通信学报, 2008, 29(1): 65-70.
|
[13]
|
黄炳华, 钮利荣, 蔺兰峰. 功率平衡基础上的基波分析法[J]. 电子学报, 2007, 35(10): 1994-1998.
|
[14]
|
黄炳华, 陈辰, 韦善革. 基波平衡原理的推广[J]. 固体电子学研究和进展, 2008, 28(1): 57-62.
|
[15]
|
黄炳华, 黄新民, 李晖. 基于功率平衡的谐波分析法[A]. 22届电路与系统学术年会论文集[C], 上海复旦大学, 2010.
|
[16]
|
B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions. International Conference on Electric Information and Control Engineering, Nanning, 15-17 April 2011: 2307-2310.
|
[17]
|
B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions of nonlinear oscillations. Procedia Engineering, 2011, 16: 325-332.
|
[18]
|
S. M. Yu, W. K. S. Tang, J. Lu, et al. Generating 2n-wing attrac- tors from Lorenz-like systems. International Journal of Circuit Theory and Applications, 2010, 38(3): 243-258.
|
[19]
|
Mathematica程序(按出现先后排序):①Tab1.nb; ②Leq.nb; ③whwh.nb; ④Tab2.nb; ⑤wh35.nb; ⑥Tab3.nb; ⑦Tab4.nb.
|