[1]
|
Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. New England Journal of Medicine, 373, 1136-1152. https://doi.org/10.1056/nejmra1406184
|
[2]
|
Pelcovits, A. and Niroula, R. (2020) Acute Myeloid Leukemia: A Review. Rhode Island Medical Journal, 103, 38-40.
|
[3]
|
Chattopadhyaya, S. and Ghosal, S. (2022) DNA Methylation: A Saga of Genome Maintenance in Hematological Perspective. Human Cell, 35, 448-461. https://doi.org/10.1007/s13577-022-00674-9
|
[4]
|
张闻, 郑多. 全国普通高等医学院校五年制临床医学专业“十三五”规划教材 医学生物学[M]. 北京: 中国医药科技出版社, 2016: 105.
|
[5]
|
Subramaniam, D., Thombre, R., Dhar, A. and Anant, S. (2014) DNA Methyltransferases: A Novel Target for Prevention and Therapy. Frontiers in Oncology, 4, Article 80. https://doi.org/10.3389/fonc.2014.00080
|
[6]
|
Cui, D. and Xu, X. (2018) DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. International Journal of Molecular Sciences, 19, Article 1315. https://doi.org/10.3390/ijms19051315
|
[7]
|
Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., et al. (2010) DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination. Science Signaling, 3, ra80. https://doi.org/10.1126/scisignal.2001462
|
[8]
|
Bai, J., Zhang, X., Hu, K., Liu, B., Wang, H., Li, A., et al. (2016) Silencing DNA Methyltransferase 1 (DNMT1) Inhibits Proliferation, Metastasis and Invasion in ESCC by Suppressing Methylation of RASSF1A and DAPK. Oncotarget, 7, 44129-44141. https://doi.org/10.18632/oncotarget.9866
|
[9]
|
Scifres, C.M., Catov, J.M. and Simhan, H. (2012) Maternal Serum Fatty Acid Binding Protein 4 (FABP4) and the Development of Preeclampsia. The Journal of Clinical Endocrinology & Metabolism, 97, E349-E356. https://doi.org/10.1210/jc.2011-2276
|
[10]
|
Wang, X., Zhang, H. and Li, Y. (2019) Preliminary Study on the Role of Mir‑148a and DNMT1 in the Pathogenesis of Acute Myeloid Leukemia. Molecular Medicine Reports, 19, 2943-2952. https://doi.org/10.3892/mmr.2019.9913
|
[11]
|
Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C.E.A., Callegari, E., et al. (2009) Microrna-29b Induces Global DNA Hypomethylation and Tumor Suppressor Gene Reexpression in Acute Myeloid Leukemia by Targeting Directly DNMT3A and 3B and Indirectly DNMT1. Blood, 113, 6411-6418. https://doi.org/10.1182/blood-2008-07-170589
|
[12]
|
Li, S., Chowdhury, R., Liu, F., Chou, A.P., Li, T., Mody, R.R., et al. (2014) Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in IDH1-Mutant Gliomas. Clinical Cancer Research, 20, 5808-5822. https://doi.org/10.1158/1078-0432.ccr-14-0234
|
[13]
|
Zhang, Y.-F. and Zhou, L. (2022) Progress on Biological Functions of miRNA-148/152 Family Members in Malignant Tumors. Fudan University Journal of Medical Sciences, 49, 447-453.
|
[14]
|
Li, S., Jin, X., Wu, H., Wang, Y., Li, X., Guo, Y., et al. (2017) HA117 Endows HL60 Cells with a Stem-Like Signature by Inhibiting the Degradation of DNMT1 via Its Ability to Down-Regulate Expression of the GGL Domain of RGS6. PLOS ONE, 12, e0180142. https://doi.org/10.1371/journal.pone.0180142
|
[15]
|
Tagde, A., Rajabi, H., Stroopinsky, D., Gali, R., Alam, M., Bouillez, A., et al. (2016) MUC1-C Induces DNA Methyltransferase 1 and Represses Tumor Suppressor Genes in Acute Myeloid Leukemia. Oncotarget, 7, 38974-38987. https://doi.org/10.18632/oncotarget.9777
|
[16]
|
Shen, N., Yan, F., Pang, J., Wu, L., Al-Kali, A., Litzow, M.R., et al. (2014) A Nucleolin-DNMT1 Regulatory Axis in Acute Myeloid Leukemogenesis. Oncotarget, 5, 5494-5509. https://doi.org/10.18632/oncotarget.2131
|
[17]
|
Furuhashi, M. and Hotamisligil, G.S. (2008) Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nature Reviews Drug Discovery, 7, 489-503. https://doi.org/10.1038/nrd2589
|
[18]
|
Smathers, R.L. and Petersen, D.R. (2011) The Human Fatty Acid-Binding Protein Family: Evolutionary Divergences and Functions. Human Genomics, 5, Article No. 170. https://doi.org/10.1186/1479-7364-5-3-170
|
[19]
|
Yang, A., Zhang, H., Sun, Y., Wang, Y., Yang, X., Yang, X., et al. (2016) Modulation of FABP4 Hypomethylation by DNMT1 and Its Inverse Interaction with Mir-148a/152 in the Placenta of Preeclamptic Rats and HTR-8 Cells. Placenta, 46, 49-62. https://doi.org/10.1016/j.placenta.2016.08.086
|
[20]
|
Yan, F., Shen, N., Pang, J.X., Zhang, Y.W., Rao, E.Y., Bode, A.M., et al. (2016) Fatty Acid-Binding Protein FABP4 Mechanistically Links Obesity with Aggressive AML by Enhancing Aberrant DNA Methylation in AML Cells. Leukemia, 31, 1434-1442. https://doi.org/10.1038/leu.2016.349
|
[21]
|
Shen, N., Yan, F., Pang, J., Zhao, N., Gangat, N., Wu, L., et al. (2017) Inactivation of Receptor Tyrosine Kinases Reverts Aberrant DNA Methylation in Acute Myeloid Leukemia. Clinical Cancer Research, 23, 6254-6266. https://doi.org/10.1158/1078-0432.ccr-17-0235
|
[22]
|
Rau, R.E., Rodriguez, B.A., Luo, M., Jeong, M., Rosen, A., Rogers, J.H., et al. (2016) DOT1L as a Therapeutic Target for the Treatment of DNMT3A-Mutant Acute Myeloid Leukemia. Blood, 128, 971-981. https://doi.org/10.1182/blood-2015-11-684225
|
[23]
|
Yang, L., Rau, R. and Goodell, M.A. (2015) DNMT3A in Haematological Malignancies. Nature Reviews Cancer, 15, 152-165. https://doi.org/10.1038/nrc3895
|
[24]
|
Spencer, D.H., Russler-Germain, D.A., Ketkar, S., Helton, N.M., Lamprecht, T.L., Fulton, R.S., et al. (2017) CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell, 168, 801-816.E13. https://doi.org/10.1016/j.cell.2017.01.021
|
[25]
|
Ribeiro, A.F.T., Pratcorona, M., Erpelinck-Verschueren, C., Rockova, V., Sanders, M., Abbas, S., et al. (2012) Mutant DNMT3A: A Marker of Poor Prognosis in Acute Myeloid Leukemia. Blood, 119, 5824-5831. https://doi.org/10.1182/blood-2011-07-367961
|
[26]
|
姜慧慧, 杨新, 弭苗苗, 辛钰, 武洪远, 孙成铭. DNA甲基转移酶在急性髓系白血病中作用的研究进展[J]. 国际检验医学杂志, 2022, 43(1): 106-109+125.
|
[27]
|
Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894
|
[28]
|
Brunetti, L., Gundry, M.C. and Goodell, M.A. (2016) DNMT3A in Leukemia. Cold Spring Harbor Perspectives in Medicine, 7, a030320. https://doi.org/10.1101/cshperspect.a030320
|
[29]
|
Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894
|
[30]
|
Panuzzo, C., Signorino, E., Calabrese, C., Ali, M.S., Petiti, J., Bracco, E., et al. (2020) Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. Journal of Clinical Medicine, 9, Article 802. https://doi.org/10.3390/jcm9030802
|
[31]
|
杨晓晓, 罗兴春, 郭元成, 等. NPM1、FLT3、DNMT3A共突变急性髓系白血病的临床特征、预后及生物信息学分析[J]. 兰州大学学报(医学版), 2023, 49(4): 32-38.
|
[32]
|
唐善浩, 陆滢, 张丕胜, 等. 转位蛋白基因在FLT3-ITD/DNMT3A R882双突变急性髓系白血病疗效评估中的价值[J]. 中国实验血液学杂志, 2023, 31(1): 45-49.
|
[33]
|
张悦. 去甲基化药物治疗伴DNMT3A和TET2基因突变的老年急性髓系白血病临床及实验研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
|
[34]
|
Sinha, S., Thomas, D., Yu, L., Gentles, A.J., Jung, N., Corces-Zimmerman, M.R., et al. (2015) Mutant WT1 Is Associated with DNA Hypermethylation of PRC2 Targets in AML and Responds to EZH2 Inhibition. Blood, 125, 316-326. https://doi.org/10.1182/blood-2014-03-566018
|
[35]
|
Chen, X., Zhou, W., Song, R., Liu, S., Wang, S., Chen, Y., et al. (2022) Tumor Suppressor CEBPA Interacts with and Inhibits DNMT3A Activity. Science Advances, 8, eabl5220. https://doi.org/10.1126/sciadv.abl5220
|
[36]
|
Brunetti, L., Gundry, M.C. and Goodell, M.A. (2016) DNMT3A in Leukemia. Cold Spring Harbor Perspectives in Medicine, 7, a030320. https://doi.org/10.1101/cshperspect.a030320
|
[37]
|
Pløen, G.G., Nederby, L., Guldberg, P., Hansen, M., Ebbesen, L.H., Jensen, U.B., et al. (2014) Persistence of DNMT3A Mutations at Long-Term Remission in Adult Patients with AML. British Journal of Haematology, 167, 478-486. https://doi.org/10.1111/bjh.13062
|
[38]
|
舒香. 成人急性髓系白血病基因突变特点及与预后等相关因素分析[D]: [硕士学位论文]. 南昌: 南昌大学, 2024.
|
[39]
|
王万玥, 李玉娇, 李永丽, 等. 中国成人急性髓系白血病遗传分子学特征及预后分析[J]. 现代肿瘤医学, 2024, 32(4): 703-708.
|
[40]
|
Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894
|
[41]
|
Jian, J., Yuan, C., Ji, C., Hao, H. and Lu, F. (2023) DNA Methylation-Based Subtypes of Acute Myeloid Leukemia with Distinct Prognosis and Clinical Features. Clinical and Experimental Medicine, 23, 2639-2649. https://doi.org/10.1007/s10238-022-00980-4
|
[42]
|
Ley, T.J., Ding, L., Walter, M.J., McLellan, M.D., Lamprecht, T., Larson, D.E., et al. (2010) DNMT3A Mutations in Acute Myeloid Leukemia. New England Journal of Medicine, 363, 2424-2433. https://doi.org/10.1056/nejmoa1005143
|
[43]
|
Wong, K.K., Lawrie, C.H. and Green, T.M. (2019) Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomarker Insights, 14, Article 117727191984645. https://doi.org/10.1177/1177271919846454
|
[44]
|
Mill, C.P., Fiskus, W., DiNardo, C.D., Qian, Y., Raina, K., Rajapakshe, K., et al. (2019) RUNX1-Targeted Therapy for AML Expressing Somatic or Germline Mutation in RUNX1. Blood, 134, 59-73. https://doi.org/10.1182/blood.2018893982
|
[45]
|
Hayette, S., Thomas, X., Jallades, L., Chabane, K., Charlot, C., Tigaud, I., et al. (2012) High DNA Methyltransferase DNMT3B Levels: A Poor Prognostic Marker in Acute Myeloid Leukemia. PLOS ONE, 7, e51527. https://doi.org/10.1371/journal.pone.0051527
|
[46]
|
高爱, 郑亚伟, 程涛. DNA甲基化修饰在白血病发生中作用的研究进展[J]. 中华血液学杂志, 2016, 37(11): 1003-1007.
|
[47]
|
Niederwieser, C., Kohlschmidt, J., Volinia, S., Whitman, S.P., Metzeler, K.H., Eisfeld, A., et al. (2014) Prognostic and Biologic Significance of DNMT3B Expression in Older Patients with Cytogenetically Normal Primary Acute Myeloid Leukemia. Leukemia, 29, 567-575. https://doi.org/10.1038/leu.2014.267
|
[48]
|
Zheng, Y., Zhang, H., Wang, Y., Li, X., Lu, P., Dong, F., et al. (2016) Loss of DNMT3b Accelerates MLL-AF9 Leukemia Progression. Leukemia, 30, 2373-2384. https://doi.org/10.1038/leu.2016.112
|
[49]
|
Poole, C.J., Zheng, W., Lodh, A., Yevtodiyenko, A., Liefwalker, D., Li, H., et al. (2017) DNMT3B Overexpression Contributes to Aberrant DNA Methylation and Myc-Driven Tumor Maintenance in T-ALL and Burkitt’s Lymphoma. Oncotarget, 8, 76898-76920. https://doi.org/10.18632/oncotarget.20176
|
[50]
|
Masetti, R., Bertuccio, S.N., Astolfi, A., Chiarini, F., Lonetti, A., Indio, V., et al. (2017) Hh/Gli Antagonist in Acute Myeloid Leukemia with CBFA2T3-GLIS2 Fusion Gene. Journal of Hematology & Oncology, 10, Article No. 26. https://doi.org/10.1186/s13045-017-0396-0
|
[51]
|
Bi, L., Zhou, B., Li, H., He, L., Wang, C., Wang, Z., et al. (2018) A Novel miR-375-HOXB3-CDCA3/DNMT3B Regulatory Circuitry Contributes to Leukemogenesis in Acute Myeloid Leukemia. BMC Cancer, 18, Article No. 182. https://doi.org/10.1186/s12885-018-4097-z
|
[52]
|
Memari, F., Joneidi, Z., Taheri, B., Aval, S.F., Roointan, A. and Zarghami, N. (2018) Epigenetics and Epi-Mirnas: Potential Markers/therapeutics in Leukemia. Biomedicine & Pharmacotherapy, 106, 1668-1677. https://doi.org/10.1016/j.biopha.2018.07.133
|
[53]
|
Lamba, J.K., Cao, X., Raimondi, S.C., Rafiee, R., Downing, J.R., Shi, L., et al. (2018) Integrated Epigenetic and Genetic Analysis Identifies Markers of Prognostic Significance in Pediatric Acute Myeloid Leukemia. Oncotarget, 9, 26711-26723. https://doi.org/10.18632/oncotarget.25475
|
[54]
|
Itonaga, H., Imanishi, D., Wong, Y., Sato, S., Ando, K., Sawayama, Y., et al. (2014) Expression of Myeloperoxidase in Acute Myeloid Leukemia Blasts Mirrors the Distinct DNA Methylation Pattern Involving the Downregulation of DNA Methyltransferase DNMT3B. Leukemia, 28, 1459-1466. https://doi.org/10.1038/leu.2014.15
|
[55]
|
Niederwieser, C., Kohlschmidt, J., Volinia, S., Whitman, S.P., Metzeler, K.H., Eisfeld, A., et al. (2014) Prognostic and Biologic Significance of DNMT3B Expression in Older Patients with Cytogenetically Normal Primary Acute Myeloid Leukemia. Leukemia, 29, 567-575. https://doi.org/10.1038/leu.2014.267
|
[56]
|
邓丽娟. DNMTs的表达及突变在急性髓系白血病中的意义[D]: [硕士学位论文]. 兰州: 兰州大学, 2021.
|
[57]
|
Zheng, Y., Zhang, H., Wang, Y., Li, X., Lu, P., Dong, F., et al. (2016) Loss of Dnmt3b Accelerates MLL-AF9 Leukemia Progression. Leukemia, 30, 2373-2384. https://doi.org/10.1038/leu.2016.112
|
[58]
|
Larmonie, N.S.D., Arentsen-Peters, T.C.J.M., Obulkasim, A., Valerio, D., Sonneveld, E., Danen-van Oorschot, A.A., et al. (2017) MN1 Overexpression Is Driven by Loss of DNMT3B Methylation Activity in Inv(16) Pediatric AML. Oncogene, 37, 107-115. https://doi.org/10.1038/onc.2017.293
|