[1]
|
Brindley, P.J., Bachini, M., Ilyas, S.I., Khan, S.A., Loukas, A., Sirica, A.E., et al. (2021) Cholangiocarcinoma. Nature Reviews Disease Primers, 7, Article No. 65. https://doi.org/10.1038/s41572-021-00300-2
|
[2]
|
Cardinale, V. (2019) Classifications and Misclassification in Cholangiocarcinoma. Liver International, 39, 260-262. https://doi.org/10.1111/liv.13998
|
[3]
|
Elvevi, A., Laffusa, A., Scaravaglio, M., Rossi, R.E., Longarini, R., Stagno, A.M., et al. (2022) Clinical Treatment of Cholangiocarcinoma: An Updated Comprehensive Review. Annals of Hepatology, 27, Article 100737. https://doi.org/10.1016/j.aohep.2022.100737
|
[4]
|
Chen, C., Jiang, J., Fang, M., Zhou, L., Chen, Y., Zhou, J., et al. (2020) MicroRNA-129-2-3p Directly Targets Wip1 to Suppress the Proliferation and Invasion of Intrahepatic Cholangiocarcinoma. Journal of Cancer, 11, 3216-3224. https://doi.org/10.7150/jca.41492
|
[5]
|
Liu, S., Liu, X., Li, X., Li, O., Yi, W., Khan, J., et al. (2020) Application of Laparoscopic Radical Resection for Type III and IV Hilar Cholangiocarcinoma Treatment. Gastroenterology Research and Practice, 2020, Article 1506275. https://doi.org/10.1155/2020/1506275
|
[6]
|
Montal, R., Sia, D., Montironi, C., Leow, W.Q., Esteban-Fabró, R., Pinyol, R., et al. (2020) Molecular Classification and Therapeutic Targets in Extrahepatic Cholangiocarcinoma. Journal of Hepatology, 73, 315-327. https://doi.org/10.1016/j.jhep.2020.03.008
|
[7]
|
Wahida, A., Buschhorn, L., Fröhling, S., Jost, P.J., Schneeweiss, A., Lichter, P., et al. (2022) The Coming Decade in Precision Oncology: Six Riddles. Nature Reviews Cancer, 23, 43-54. https://doi.org/10.1038/s41568-022-00529-3
|
[8]
|
Capuozzo, M., Santorsola, M., Landi, L., Granata, V., Perri, F., Celotto, V., et al. (2022) Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New Towards Precision Oncology. International Journal of Molecular Sciences, 23, Article 15124. https://doi.org/10.3390/ijms232315124
|
[9]
|
Jiang, Y., Liu, Y., Xiao, Y., Hu, X., Jiang, L., Zuo, W., et al. (2020) Molecular Subtyping and Genomic Profiling Expand Precision Medicine in Refractory Metastatic Triple-Negative Breast Cancer: The FUTURE Trial. Cell Research, 31, 178-186. https://doi.org/10.1038/s41422-020-0375-9
|
[10]
|
Yu, Y., Chen, K. and Fan, Y. (2022) Extensive‐Stage Small‐Cell Lung Cancer: Current Management and Future Directions. International Journal of Cancer, 152, 2243-2256. https://doi.org/10.1002/ijc.34346
|
[11]
|
Llovet, J.M., Montal, R., Sia, D. and Finn, R.S. (2018) Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 15, 599-616. https://doi.org/10.1038/s41571-018-0073-4
|
[12]
|
Ross, J.S., Wang, K., Gay, L., Al-Rohil, R., Rand, J.V., Jones, D.M., et al. (2014) New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. The Oncologist, 19, 235-242. https://doi.org/10.1634/theoncologist.2013-0352
|
[13]
|
Javle, M., Bekaii‐Saab, T., Jain, A., Wang, Y., Kelley, R.K., Wang, K., et al. (2016) Biliary Cancer: Utility of Next‐Generation Sequencing for Clinical Management. Cancer, 122, 3838-3847. https://doi.org/10.1002/cncr.30254
|
[14]
|
Massironi, S., Pilla, L., Elvevi, A., Longarini, R., Rossi, R.E., Bidoli, P., et al. (2020) New and Emerging Systemic Therapeutic Options for Advanced Cholangiocarcinoma. Cells, 9, Article 688. https://doi.org/10.3390/cells9030688
|
[15]
|
Wagner, J.P., Wolf-Yadlin, A., Sevecka, M., Grenier, J.K., Root, D.E., Lauffenburger, D.A., et al. (2013) Receptor Tyrosine Kinases Fall into Distinct Classes Based on Their Inferred Signaling Networks. Science Signaling, 6, ra58. https://doi.org/10.1126/scisignal.2003994
|
[16]
|
Katoh, M. (2018) Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology. Nature Reviews Clinical Oncology, 16, 105-122. https://doi.org/10.1038/s41571-018-0115-y
|
[17]
|
Ornitz, D.M. and Itoh, N. (2015) The Fibroblast Growth Factor Signaling Pathway. WIREs Developmental Biology, 4, 215-266. https://doi.org/10.1002/wdev.176
|
[18]
|
Javle, M., Lowery, M., Shroff, R.T., Weiss, K.H., Springfeld, C., Borad, M.J., et al. (2018) Phase II Study of BGJ398 in Patients with FGFR-Altered Advanced Cholangiocarcinoma. Journal of Clinical Oncology, 36, 276-282. https://doi.org/10.1200/jco.2017.75.5009
|
[19]
|
Salati, M., Caputo, F., Baldessari, C., Carotenuto, P., Messina, M., Caramaschi, S., et al. (2021) The Evolving Role of FGFR2 Inhibitors in Intrahepatic Cholangiocarcinoma: From Molecular Biology to Clinical Targeting. Cancer Management and Research, 13, 7747-7757. https://doi.org/10.2147/cmar.s330710
|
[20]
|
Yang, R., Song, Y., Shakoor, K., Yi, W., Peng, C. and Liu, S. (2022) Insights into the Role of STAT3 in Intrahepatic Cholangiocarcinoma (Review). Molecular Medicine Reports, 25, Article No. 171. https://doi.org/10.3892/mmr.2022.12687
|
[21]
|
Javle, M.M., Shaib, W.L., Braun, S., Engelhardt, M., Borad, M.J., Abou-Alfa, G.K., et al. (2020) FIDES-01, a Phase II Study of Derazantinib in Patients with Unresectable Intrahepatic Cholangiocarcinoma (iCCA) and FGFR2 Fusions and Mutations or Amplifications (M/A). Journal of Clinical Oncology, 38, TPS597. https://doi.org/10.1200/jco.2020.38.4_suppl.tps597
|
[22]
|
Huang, E.J. and Reichardt, L.F. (2001) Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience, 24, 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
|
[23]
|
Kheder, E.S. and Hong, D.S. (2018) Emerging Targeted Therapy for Tumors with NTRK Fusion Proteins. Clinical Cancer Research, 24, 5807-5814. https://doi.org/10.1158/1078-0432.ccr-18-1156
|
[24]
|
Drilon, A., Laetsch, T.W., Kummar, S., DuBois, S.G., Lassen, U.N., Demetri, G.D., et al. (2018) Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. New England Journal of Medicine, 378, 731-739. https://doi.org/10.1056/nejmoa1714448
|
[25]
|
Luvira, V., Satitkarnmanee, E., Pugkhem, A., Kietpeerakool, C., Lumbiganon, P. and Pattanittum, P. (2021) Postoperative Adjuvant Chemotherapy for Resectable Cholangiocarcinoma. Cochrane Database of Systematic Reviews, No. 9, CD012814. https://doi.org/10.1002/14651858.cd012814.pub2
|
[26]
|
Drilon, A. (2019) TRK Inhibitors in TRK Fusion-Positive Cancers. Annals of Oncology, 30, viii23-viii30. https://doi.org/10.1093/annonc/mdz282
|
[27]
|
Drilon, A., Siena, S., Ou, S.I., Patel, M., Ahn, M.J., Lee, J., et al. (2017) Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and Startrk-1). Cancer Discovery, 7, 400-409. https://doi.org/10.1158/2159-8290.cd-16-1237
|
[28]
|
Drilon, A., Nagasubramanian, R., Blake, J.F., Ku, N., Tuch, B.B., Ebata, K., et al. (2017) A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discovery, 7, 963-972. https://doi.org/10.1158/2159-8290.cd-17-0507
|
[29]
|
Lee, J., Park, S.H., Chang, H., Kim, J.S., Choi, H.J., Lee, M.A., et al. (2012) Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary-Tract Cancer: A Multicentre, Open-Label, Randomised, Phase 3 Study. The Lancet Oncology, 13, 181-188. https://doi.org/10.1016/s1470-2045(11)70301-1
|
[30]
|
Malka, D., Cervera, P., Foulon, S., Trarbach, T., de la Fouchardière, C., Boucher, E., et al. (2014) Gemcitabine and Oxaliplatin with or without Cetuximab in Advanced Biliary-Tract Cancer (BINGO): A Randomised, Open-Label, Non-Comparative Phase 2 Trial. The Lancet Oncology, 15, 819-828. https://doi.org/10.1016/s1470-2045(14)70212-8
|
[31]
|
Gruenberger, B., Schueller, J., Heubrandtner, U., Wrba, F., Tamandl, D., Kaczirek, K., et al. (2010) Cetuximab, Gemcitabine, and Oxaliplatin in Patients with Unresectable Advanced or Metastatic Biliary Tract Cancer: A Phase 2 Study. The Lancet Oncology, 11, 1142-1148. https://doi.org/10.1016/s1470-2045(10)70247-3
|
[32]
|
Sohal, D.P.S., Mykulowycz, K., Uehara, T., Teitelbaum, U.R., Damjanov, N., Giantonio, B.J., et al. (2013) A Phase II Trial of Gemcitabine, Irinotecan and Panitumumab in Advanced Cholangiocarcinoma. Annals of Oncology, 24, 3061-3065. https://doi.org/10.1093/annonc/mdt416
|
[33]
|
Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., et al. (2005) Histone Demethylation by a Family of Jmjc Domain-Containing Proteins. Nature, 439, 811-816. https://doi.org/10.1038/nature04433
|
[34]
|
Dang, L. and Su, S.M. (2017) Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annual Review of Biochemistry, 86, 305-331. https://doi.org/10.1146/annurev-biochem-061516-044732
|
[35]
|
Yang, H., Ye, D., Guan, K. and Xiong, Y. (2012) IDH1 and IDH2 Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 18, 5562-5571. https://doi.org/10.1158/1078-0432.ccr-12-1773
|
[36]
|
Lee, H. and Ross, J.S. (2017) The Potential Role of Comprehensive Genomic Profiling to Guide Targeted Therapy for Patients with Biliary Cancer. Therapeutic Advances in Gastroenterology, 10, 507-520. https://doi.org/10.1177/1756283x17698090
|
[37]
|
Ilyas, S.I. and Gores, G.J. (2017) Emerging Molecular Therapeutic Targets for Cholangiocarcinoma. Journal of Hepatology, 67, 632-644. https://doi.org/10.1016/j.jhep.2017.03.026
|
[38]
|
Abou-Alfa, G.K., Macarulla, T., Javle, M.M., Kelley, R.K., Lubner, S.J., Adeva, J., et al. (2020) Ivosidenib in IDH1-Mutant, Chemotherapy-Refractory Cholangiocarcinoma (ClariDHy): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Oncology, 21, 796-807. https://doi.org/10.1016/s1470-2045(20)30157-1
|
[39]
|
Golub, D., Iyengar, N., Dogra, S., Wong, T., Bready, D., Tang, K., et al. (2019) Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology, 9, Article 417. https://doi.org/10.3389/fonc.2019.00417
|
[40]
|
Valle, J.W., Lamarca, A., Goyal, L., Barriuso, J. and Zhu, A.X. (2017) New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discovery, 7, 943-962. https://doi.org/10.1158/2159-8290.cd-17-0245
|
[41]
|
Hyman, D.M., Puzanov, I., Subbiah, V., Faris, J.E., Chau, I., Blay, J., et al. (2015) Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. New England Journal of Medicine, 373, 726-736. https://doi.org/10.1056/nejmoa1502309
|
[42]
|
Planchard, D., Smit, E.F., Groen, H.J.M., Mazieres, J., Besse, B., Helland, Å., et al. (2017) Dabrafenib Plus Trametinib in Patients with Previously Untreated BRAFV600E-Mutant Metastatic Non-Small-Cell Lung Cancer: An Open-Label, Phase 2 Trial. The Lancet Oncology, 18, 1307-1316. https://doi.org/10.1016/s1470-2045(17)30679-4
|
[43]
|
Taylor, M.H., Schmidt, E.V., Dutcus, C., Pinheiro, E.M., Funahashi, Y., Lubiniecki, G., et al. (2020) The LEAP Program: Lenvatinib Plus Pembrolizumab for the Treatment of Advanced Solid Tumors. Future Oncology, 17, 637-648. https://doi.org/10.2217/fon-2020-0937
|
[44]
|
Lin, J., Yang, X., Long, J., Zhao, S., Mao, J., Wang, D., et al. (2020) Pembrolizumab Combined with Lenvatinib as Non-First-Line Therapy in Patients with Refractory Biliary Tract Carcinoma. Hepatobiliary Surgery and Nutrition, 9, 414-424. https://doi.org/10.21037/hbsn-20-338
|
[45]
|
Yarchoan, M., Cope, L., Ruggieri, A.N., Anders, R.A., Noonan, A.M., Goff, L.W., et al. (2021) Multicenter Randomized Phase II Trial of Atezolizumab with or without Cobimetinib in Biliary Tract Cancers. Journal of Clinical Investigation, 131, e152670. https://doi.org/10.1172/jci152670
|