胆管癌的靶向治疗研究进展
Research Progress in Targeted Therapy for Cholangiocarcinoma
DOI: 10.12677/acm.2024.1482383, PDF, HTML, XML,   
作者: 牛 蒙:延安大学医学院,陕西 延安;李晓勇:延安大学附属医院肝胆外科,陕西 延安
关键词: 胆管癌靶向治疗治疗Cholangiocarcinoma Targeted Therapy Treatment
摘要: 胆管癌(CCA)是一种起源于胆管及其分支上皮的恶性肿瘤。由于其异质性高,早期没有特异性的临床指征,诊断常为晚期CCA。手术切除术后5年生存率(长期生存率)很差。吉西他滨联合铂类治疗方案已被用作晚期患者的一线化疗。近年来,针对多种恶性肿瘤的靶向治疗取得了长足进展,在晚期CCA中显示出良好的疗效和安全性。然而,目前CCA的靶向治疗仍存在不良反应、耐药性、个体差异等诸多挑战。因此,研究需要进一步深入探索CCA恶性肿瘤的靶向治疗机制,开发更有效、更安全的药物,并根据患者特点精准制定方案,以进一步改善患者未来的预后。本文综述了CCA靶向治疗的最新进展,旨在为CCA靶向治疗的研究和临床工作提供策略。
Abstract: Cholangiocarcinoma (CCA) is a malignant tumor that originates from the epithelial epithelium of the bile ducts and their branches. Due to its high heterogeneity, there is no specific clinical indication for the early stage, and the diagnosis is often advanced CCA. The 5-year survival rate (long-term survival) after surgical resection is poor. Gemcitabine plus platinum-based regimens have been used as first-line chemotherapy for patients with advanced disease. In recent years, significant progress has been made in targeted therapy for a variety of malignancies, showing good efficacy and safety in advanced CCA. However, there are still many challenges in the targeted therapy of CCA, such as adverse reactions, drug resistance, and individual differences. Therefore, it is necessary to further explore the targeted therapy mechanism of CCA malignancies, develop more effective and safer drugs, and formulate precise plans according to the characteristics of patients to further improve the prognosis of patients in the future. This article reviews the latest advances in CCA-targeted therapy, aiming to provide strategies for the research and clinical work of CCA-targeted therapy.
文章引用:牛蒙, 李晓勇. 胆管癌的靶向治疗研究进展[J]. 临床医学进展, 2024, 14(8): 1499-1506. https://doi.org/10.12677/acm.2024.1482383

1. 引言

胆管癌(Cholangiocarcinoma, CCA)是一种高度致命的胆管上皮细胞恶性肿瘤,发生在胆道树和肝实质中[1]。根据其解剖亚型,CCA可分为肝内胆管癌(intrahepatic cholangiocarcinoma, ICC)、肺门周围胆管癌(perichelar cholangiocarcinoma, pCCA)和远端胆管癌(distal cholangiocarcinoma, dCCA) [2] [3]。由于胆囊管插入的解剖学差异,pCCA和dCCA可统称为肝外胆管癌(extrahepatic cholangiocarcinoma, eCCA) [4] [5]。CCA是仅次于肝细胞癌(HCC)的第二常见的原发性肝恶性肿瘤,占所有肿瘤的1% [6]。近年来,随着基因检测技术的逐渐成熟,CCA的分子病理学逐渐被揭示,精准肿瘤学已成为治疗CCA的一种有前途的方法。精准肿瘤学的目标是筛选出更有可能从治疗中获益的潜在人群,并为患者提供更有针对性的治疗策略[7]。近年来,随着分子靶向药物的开发,肿瘤的治疗效果得到了显著提高[8]。许多研究表明,精准治疗提高了乳腺癌、肺癌和其他肿瘤患者的生存率并改善了预后[9]-[12]。然而,只有少数患者仍能获得持久的生存获益,大多数患者在临床实践中在治疗过程中会迅速产生耐药性。高达70%的ICC可能至少有1个靶向基因突变[13] [14]。常见的治疗靶点包括成纤维细胞生长因子受体2 (FGFR2, 14%)、KRAS (11%)、10号染色体上缺失的磷酸酶和张力蛋白同源物(PTEN, 11%)、细胞周期蛋白依赖性激酶抑制剂2 A/B (CDKN2B, 7%)、ERB-B2受体酪氨酸激酶3 (ERBB3, 7%)、MET (7%)、NRAS (7%)和CDK6 (7%)、BRCA1 (4%)、BRCA2 (4%)、NF1 (4%)、PIK3CA (4%)、PTCH1 (4%)和TSC1基因(4%) [13]。为了标记这些靶点,常见的靶向药物包括成纤维细胞生长因子受体2 (FGFR2)抑制剂、异柠檬酸脱氢酶(IDH)抑制剂、BRAF抑制剂等[15]

2. 受体酪氨酸激酶抑制剂

受体酪氨酸激酶(RTK)是一种细胞质膜受体蛋白(由细胞外配体结合域、跨膜螺旋结构域和细胞内结构域组成),介导细胞通讯和信号传导[16]。尽管ICC的病因各不相同,但受体酪氨酸激酶信号通路的异常激活仍然是ICC的常见突变[13]。近年来,许多抑制受体酪氨酸酶的新靶点被提出。

2.1. 成纤维细胞生长因子受体抑制剂

成纤维细胞生长因子受体(FGFR)属于RTKs家族,在胚胎发育、组织修复、肿瘤血管生成和增殖中起重要作用[17]。FGFR在多种细胞类型中表达,由4个细胞内跨膜受体组成,这些受体具有酪氨酸激酶结构域(FGFR1-4),由FLG、BEK、CEK-2和FREK基因编码[18]。FGFR突变见于10%~15%的ICC [19]。FGFR突变通过细胞内结构域C末端的自磷酸化和参与细胞存活和增殖特定途径的其他受体或效应分子(包括Ras-MAPK、PI3K-Akt、PLCγ和STAT)诱导受体二聚化[20] [21]

CCA的基因组学研究表明,约15%的CCA患者与FGFR2异常有关,而约50%的CCA肿瘤(肝内、肝门周围和远端)存在FGFR4过表达[13] [14]。FGFR抑制剂在ICC中起重要作用,FGFR突变在CCA患者中很常见。

2.1.1. 嘀替替尼

2018年,美国FDA授予呋替替尼治疗CCA的孤儿药(ODD)称号。根据这项研究的数据,FGFR1-FGFR4抑制剂Futibatinib被美国FDA授予突破性药物认定(BTD)。用于治疗先前接受FGFR2基因重排治疗的局部晚期或转移性CCA,包括基因融合。在这项研究中,103例FGFR2基因重排(包括基因融合)与ICC的患者接受了20 mg剂量的futibatinib,每日一次。呋替替尼的ORR为41.7%。中位缓解持续时间(DOR)为9.7个月,72%为≥6个月,DCR为82.5%。mPFS为9.0个月,mOS为21.7个月,72%的患者在12个月时存活。在安全性方面,常见的治疗相关不良事件(TRAE)为高磷血症、脱发和口干。最常见的III级TRAE是高磷血症,经过适当的治疗后会消失。报告了一例IV级转氨酶升高病例,无治疗相关死亡。

2.1.2. 地拉替尼

Derazantinib已在美国和欧盟接受ODD用于治疗ICC。对II期FIDES-01研究队列1 (ICC与FGFR2基因融合)的最新分析显示,客观缓解率(ORR)为21.4%,DCR为74.8%,mPFS为7.8个月。这些临床数据进一步支持了地拉替尼单药治疗CCA的临床效用。在队列2 (FGFR2基因突变或扩增)中,DCR为79%,其中1例患者确认对CR有完全缓解,1例患者对PR有部分但未经证实的反应,9例患者SD稳定且最佳缓解BOR [22]。与其他FGFR抑制剂相比,地拉替尼在FGFR2突变的CCA患者中与英菲替尼一样有效,但与呋替替尼和培米加替尼相比,还有改进的余地。

研究结果总结证实,FGFR抑制剂靶向治疗对CCA患者有一定的疗效,但具体治疗效果需要更多的临床研究数据来证实。

2.2. 神经营养受体酪氨酸激酶抑制剂

神经营养受体酪氨酸激酶(NTRK)由NTRK1、NTRK2和NTRK3基因编码,位于跨膜蛋白TRKA (高亲和神经生长因子受体)、TRKB (BDNF/NT-3生长因子受体)和TRKC (NT-3生长因子受体)的原肌球蛋白受体激酶(TRK)家族中,在外周和中枢神经系统的生理、发育和功能中起关键作用[23]。NRTK基因与其他基因的融合将导致TRK蛋白的持续活性状态。它会触发细胞内生物通路的自由激活和信号转导级联反应,进而导致异常的细胞周期进程、增殖、细胞凋亡和存活[24]

NTRK融合在ICC中很少见,而FGFR2突变患者的NTRK融合率为15% [25]。第一代NTRK抑制剂larotrectinib (LOXO-101)和恩曲替尼(RXDX-101)在NTRK融合阳性患者中取得了良好的疗效[26] [27]。然而,拉罗替尼的半衰期(2.9小时)明显短于恩曲替尼(20~22小时),这可能会影响这些药物的安全性和有效性[28]。与其他酪氨酸激酶抑制剂类似,第一代TRK抑制剂可以控制初始疾病,但在临床应用中仍发现基因突变引起的耐药性[24]

Selitrectinib是一种口服下一代选择性TRK抑制剂,在TRK激酶结构域存在突变的情况下仍有效。Selitrectinib与野生型TRKA、TRKB和TRKC具有很强的结合力(在激酶测定和LT中);同时,selitrectinib对具有不同耐药突变的TRK蛋白也显示出低纳摩尔抑制活性[29]。其他几种多激酶抑制剂,如克唑替尼、卡博扎替尼、普纳替尼和尼达尼布,也显示出对NTRK的一些抑制活性[27]。因此,NRTK抑制剂的临床研究可以增加,未来应侧重于降低耐药性,提高药效。

2.3. HER抑制剂

人表皮生长因子受体(HER)酪氨酸激酶的异常包括EGFR和HER1-4突变。EGFR是酪氨酸激酶跨膜受体的一个亚类,可与表皮生长因子结合并激活信号通路,例如细胞运动、细胞粘附、血管生成和侵袭。EGFR靶向两种类型的药物:通过细胞内途径起作用的小分子酪氨酸激酶抑制剂,如厄洛替尼和吉替尼;另一类是通过细胞外途径起作用的单克隆抗体,如西妥昔单抗和帕尼单抗[22]。在厄洛替尼,共入组133例晚期CCA患者,比较厄洛替尼联合GEMOX化疗(吉西他滨 + 奥沙利铂)和单独GEMOX化疗治疗晚期CCA的疗效。结果显示,单独使用GEMOX化疗组的mPFS为4.2个月,厄洛替尼联合GEMOX化疗组的mPFS为5.8个月。厄洛替尼联合GEMOX化疗组的客观缓释率显著高于化疗组(30% vs. 16%),但两组总生存期并未延长。中位生存期为9.5个月[30]。在西妥昔单抗的II期临床试验中,共招募了150名晚期CCA患者。比较西妥昔单抗联合GEMOX化疗和单独GEMOX化疗治疗晚期CCA的疗效。结果显示,单药化疗组的mPFS为5.5个月。西妥昔单抗联合GEMOX的中位无进展期为6.1个月,但西妥昔单抗联合GEMOX的mOS显著低于单用化疗(11.0个月vs. 12.4个月) [31]。也有报道称,在II期临床试验中,客观缓释率为63%,其中3例患者在治疗后获得完全缓解,9例患者成功接受了下期手术[32]。目前,对于单独化疗对这类药物的疗效尚无统一结论。在II期临床试验帕尼珠单抗联合吉西他滨和伊立替康治疗晚期CCA,共入组35例患者。结果显示,2例患者完全缓解,9例患者部分缓解,5个月无进展生存率为69%,持续缓解释放率为31%,mOS为12.0个月[33]

靶向HER的抑制剂包括拉帕替尼、曲妥珠单抗和帕妥珠单抗,HER抑制剂的安全性和有效性在早期临床试验中逐步得到检验。而抗HER治疗可能为HER扩增或过表达的CCA患者带来新的治疗机会。

3. 异柠檬酸脱氢酶抑制剂

异柠檬酸脱氢酶(IDH)是三羧酸循环中的关键酶,可催化异柠檬酸氧化脱羧为α-酮戊二酸(α-kg),并将NADP+还原为NADPH [34]。当IDH基因突变发生时,大量肿瘤代谢物2-羟基戊二酸(2-Hg)沉积,而α酮戊二酸(α-kg)的活性受到抑制[35]。然后导致组蛋白和DNA甲基化异常,导致基因表达障碍,导致肿瘤[36]。IDH突变发生于约10%~28%的ICC [37],IDH1基因异常比IDH2基因异常更常见[38]

3.1. 伊伏西尼

Ivosidenib是一种IDH1突变靶向抑制剂,已被批准用于新诊断和复发或难治性IDH1突变的急性髓系白血病(AML),这些患者无法接受强化化疗,并被指定为孤儿药。根据国际随机III期ClarIDHy研究的结果,IDH1抑制剂艾伏尼布已获得美国FDA的优先审评。该试验评估了与安慰剂治疗相比,一线化疗失败的晚期IDH1突变CCA患者。在至少接受过二线治疗并携带IDH1突变的185例晚期CCA患者中,126例接受了500 mg ivonib治疗,接受2.7个月的mPFS (安慰剂组为1.4个月)。艾伏尼布组6个月和12个月时PFS发生率分别为32%和22%,mOS为10.8个月(安慰剂调整后6.0个月)。阿沃尼组ORR为2%,其中PR3例,SD63例。安慰剂组患者均未达到客观缓解,17例患者出现SD。DCR分别为53%和28%。ivonib组常见的不良反应为腹水、恶心、乏力、腹泻等,总体耐受性较好[39]

3.2. 依那西尼

IDH2突变抑制剂Enasidenib是首个靶向肿瘤代谢的抗癌药物,于2017年获美国FDA批准,用于无法接受强化化疗的IDH1突变体新诊断复发或难治性急性髓系白血病(AML)。mIDH2的I/II期临床试验目前正在实体瘤中进行,但实验结果尚未公开[40]

IDH抑制剂可抑制IDH基因突变产生的异常酶活性,阻断CCA肿瘤细胞增殖,诱导肿瘤细胞凋亡,增强免疫监视。

4. BRAF激酶抑制剂

BRAF是一种丝氨酸/苏氨酸蛋白激酶,属于RAF蛋白家族,通过MAPK通路参与信号转导,刺激细胞生长和存活。BRAF基因(V600E)突变导致激酶激活,从而触发促进肿瘤发生的信号通路的持续激活。BRAF突变通常发生在ICC中,KRAS突变发生在8.6%~24.2%的ICC中,BRAF突变发生在3%~7.1%的ICC中。Ras-Raf-Mek-Erk信号通路常异常表达[41]。目前尚无针对KRAS突变的直接有效抑制剂,主要治疗方法是抑制KRAS下游蛋白。维罗非尼和达拉非尼是V600E的靶向抑制剂。Selumetinib、binimetinib 和trametinib是MEK的靶向抑制剂。在维罗非尼的II期篮子试验中,ICC缓解率仅为12.5% [42]。可能有很多患者既往接受过抗EGFR抗体治疗,导致本研究中ICC的缓解率不尽如人意。需要更多的研究来证明此类药物的治疗效果。达拉非尼联合曲美替尼(MEK抑制剂)的II期试验显示,总缓解率为51%,中位PFS为9个月,mOS为14个月[43],与吉西他滨联合顺铂作为一线治疗相当。

5. 靶向治疗与免疫治疗的联合治疗

如今,免疫检查点抑制剂(ICI)在肿瘤患者中取得了显著的临床疗效。靶向治疗与免疫治疗的联合治疗已成为CCA研究的新热点。两项临床研究表明,帕博利珠单抗联合仑伐替尼可作为不可切除或进行性胆道恶性肿瘤的后线探索性治疗选择[44] [45]。一项多中心随机II期研究表明,阿替利珠单抗和考比替尼联合治疗对既往接受过一线/二线治疗的晚期CCA患者有效。联合用药组的mPFS为3.65个月,单药组的mPFS为1.87个月。周在2020年ESMO上报告说,研究结果联合仑伐替尼联合GEMOX化疗治疗不可切除晚期ICC一线治疗,ORR为80%,DCR为93.3% (28/30),其中3例成功转化,手术切除肿瘤。在2020年ESMO中,Zhang发现GEMOX联合多纳非尼和替雷利珠单抗作为局部晚期或转移性BTC的一线治疗显示出可控的毒性和令人鼓舞的疗效,特别是在III期患者的转化率方面很有希望。近年来,CCA的联合治疗取得了长足的进步,目前有许多不同联合治疗方案的临床试验正在探索中。然而,仍有许多关键的科学和临床问题需要探索。ICIs在CCA中的抗肿瘤活性有限,这表明需要对免疫抑制细胞群进行更深入的研究。

6. 结论

靶向治疗的出现促进了CCA的精准治疗。根据生物标志物的分层,患者在分子水平上接受相应的靶向药物治疗。靶向治疗靶向在肿瘤细胞中富集并具有关键驱动价值的特定分子标志物,这些标志物会影响某些类型的组织和细胞。它具有特异性的抗肿瘤作用,并显着减少对正常细胞的损害。综上所述,靶向治疗在CCA治疗领域具有广阔的应用前景。目前,针对CCA的靶向药物越来越多,特别是随着FGFR抑制剂infigratinib和pemigatinib的上市以及IDH抑制剂ivosidenib的优先评估,用于转移性或不可切除ICC患者。靶向治疗很可能在未来成为一种新的、被广泛接受的治疗模式。但仍有许多问题需要解决,例如基因检测突变率低、耐药性高、靶向药物价格昂贵等。未来,应致力于积极应对靶向治疗的挑战,提高疗效和个体化,以更好地造福患者。相信随着基因测序技术的不断发展和靶向治疗与其他治疗相结合的发展,将会有更有效的靶向治疗和联合治疗方法使CCA患者受益,从而改善患者的预后。

参考文献

[1] Brindley, P.J., Bachini, M., Ilyas, S.I., Khan, S.A., Loukas, A., Sirica, A.E., et al. (2021) Cholangiocarcinoma. Nature Reviews Disease Primers, 7, Article No. 65.
https://doi.org/10.1038/s41572-021-00300-2
[2] Cardinale, V. (2019) Classifications and Misclassification in Cholangiocarcinoma. Liver International, 39, 260-262.
https://doi.org/10.1111/liv.13998
[3] Elvevi, A., Laffusa, A., Scaravaglio, M., Rossi, R.E., Longarini, R., Stagno, A.M., et al. (2022) Clinical Treatment of Cholangiocarcinoma: An Updated Comprehensive Review. Annals of Hepatology, 27, Article 100737.
https://doi.org/10.1016/j.aohep.2022.100737
[4] Chen, C., Jiang, J., Fang, M., Zhou, L., Chen, Y., Zhou, J., et al. (2020) MicroRNA-129-2-3p Directly Targets Wip1 to Suppress the Proliferation and Invasion of Intrahepatic Cholangiocarcinoma. Journal of Cancer, 11, 3216-3224.
https://doi.org/10.7150/jca.41492
[5] Liu, S., Liu, X., Li, X., Li, O., Yi, W., Khan, J., et al. (2020) Application of Laparoscopic Radical Resection for Type III and IV Hilar Cholangiocarcinoma Treatment. Gastroenterology Research and Practice, 2020, Article 1506275.
https://doi.org/10.1155/2020/1506275
[6] Montal, R., Sia, D., Montironi, C., Leow, W.Q., Esteban-Fabró, R., Pinyol, R., et al. (2020) Molecular Classification and Therapeutic Targets in Extrahepatic Cholangiocarcinoma. Journal of Hepatology, 73, 315-327.
https://doi.org/10.1016/j.jhep.2020.03.008
[7] Wahida, A., Buschhorn, L., Fröhling, S., Jost, P.J., Schneeweiss, A., Lichter, P., et al. (2022) The Coming Decade in Precision Oncology: Six Riddles. Nature Reviews Cancer, 23, 43-54.
https://doi.org/10.1038/s41568-022-00529-3
[8] Capuozzo, M., Santorsola, M., Landi, L., Granata, V., Perri, F., Celotto, V., et al. (2022) Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New Towards Precision Oncology. International Journal of Molecular Sciences, 23, Article 15124.
https://doi.org/10.3390/ijms232315124
[9] Jiang, Y., Liu, Y., Xiao, Y., Hu, X., Jiang, L., Zuo, W., et al. (2020) Molecular Subtyping and Genomic Profiling Expand Precision Medicine in Refractory Metastatic Triple-Negative Breast Cancer: The FUTURE Trial. Cell Research, 31, 178-186.
https://doi.org/10.1038/s41422-020-0375-9
[10] Yu, Y., Chen, K. and Fan, Y. (2022) Extensive‐Stage Small‐Cell Lung Cancer: Current Management and Future Directions. International Journal of Cancer, 152, 2243-2256.
https://doi.org/10.1002/ijc.34346
[11] Llovet, J.M., Montal, R., Sia, D. and Finn, R.S. (2018) Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 15, 599-616.
https://doi.org/10.1038/s41571-018-0073-4
[12] Ross, J.S., Wang, K., Gay, L., Al-Rohil, R., Rand, J.V., Jones, D.M., et al. (2014) New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. The Oncologist, 19, 235-242.
https://doi.org/10.1634/theoncologist.2013-0352
[13] Javle, M., Bekaii‐Saab, T., Jain, A., Wang, Y., Kelley, R.K., Wang, K., et al. (2016) Biliary Cancer: Utility of Next‐Generation Sequencing for Clinical Management. Cancer, 122, 3838-3847.
https://doi.org/10.1002/cncr.30254
[14] Massironi, S., Pilla, L., Elvevi, A., Longarini, R., Rossi, R.E., Bidoli, P., et al. (2020) New and Emerging Systemic Therapeutic Options for Advanced Cholangiocarcinoma. Cells, 9, Article 688.
https://doi.org/10.3390/cells9030688
[15] Wagner, J.P., Wolf-Yadlin, A., Sevecka, M., Grenier, J.K., Root, D.E., Lauffenburger, D.A., et al. (2013) Receptor Tyrosine Kinases Fall into Distinct Classes Based on Their Inferred Signaling Networks. Science Signaling, 6, ra58.
https://doi.org/10.1126/scisignal.2003994
[16] Katoh, M. (2018) Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology. Nature Reviews Clinical Oncology, 16, 105-122.
https://doi.org/10.1038/s41571-018-0115-y
[17] Ornitz, D.M. and Itoh, N. (2015) The Fibroblast Growth Factor Signaling Pathway. WIREs Developmental Biology, 4, 215-266.
https://doi.org/10.1002/wdev.176
[18] Javle, M., Lowery, M., Shroff, R.T., Weiss, K.H., Springfeld, C., Borad, M.J., et al. (2018) Phase II Study of BGJ398 in Patients with FGFR-Altered Advanced Cholangiocarcinoma. Journal of Clinical Oncology, 36, 276-282.
https://doi.org/10.1200/jco.2017.75.5009
[19] Salati, M., Caputo, F., Baldessari, C., Carotenuto, P., Messina, M., Caramaschi, S., et al. (2021) The Evolving Role of FGFR2 Inhibitors in Intrahepatic Cholangiocarcinoma: From Molecular Biology to Clinical Targeting. Cancer Management and Research, 13, 7747-7757.
https://doi.org/10.2147/cmar.s330710
[20] Yang, R., Song, Y., Shakoor, K., Yi, W., Peng, C. and Liu, S. (2022) Insights into the Role of STAT3 in Intrahepatic Cholangiocarcinoma (Review). Molecular Medicine Reports, 25, Article No. 171.
https://doi.org/10.3892/mmr.2022.12687
[21] Javle, M.M., Shaib, W.L., Braun, S., Engelhardt, M., Borad, M.J., Abou-Alfa, G.K., et al. (2020) FIDES-01, a Phase II Study of Derazantinib in Patients with Unresectable Intrahepatic Cholangiocarcinoma (iCCA) and FGFR2 Fusions and Mutations or Amplifications (M/A). Journal of Clinical Oncology, 38, TPS597.
https://doi.org/10.1200/jco.2020.38.4_suppl.tps597
[22] Huang, E.J. and Reichardt, L.F. (2001) Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience, 24, 677-736.
https://doi.org/10.1146/annurev.neuro.24.1.677
[23] Kheder, E.S. and Hong, D.S. (2018) Emerging Targeted Therapy for Tumors with NTRK Fusion Proteins. Clinical Cancer Research, 24, 5807-5814.
https://doi.org/10.1158/1078-0432.ccr-18-1156
[24] Drilon, A., Laetsch, T.W., Kummar, S., DuBois, S.G., Lassen, U.N., Demetri, G.D., et al. (2018) Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. New England Journal of Medicine, 378, 731-739.
https://doi.org/10.1056/nejmoa1714448
[25] Luvira, V., Satitkarnmanee, E., Pugkhem, A., Kietpeerakool, C., Lumbiganon, P. and Pattanittum, P. (2021) Postoperative Adjuvant Chemotherapy for Resectable Cholangiocarcinoma. Cochrane Database of Systematic Reviews, No. 9, CD012814.
https://doi.org/10.1002/14651858.cd012814.pub2
[26] Drilon, A. (2019) TRK Inhibitors in TRK Fusion-Positive Cancers. Annals of Oncology, 30, viii23-viii30.
https://doi.org/10.1093/annonc/mdz282
[27] Drilon, A., Siena, S., Ou, S.I., Patel, M., Ahn, M.J., Lee, J., et al. (2017) Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and Startrk-1). Cancer Discovery, 7, 400-409.
https://doi.org/10.1158/2159-8290.cd-16-1237
[28] Drilon, A., Nagasubramanian, R., Blake, J.F., Ku, N., Tuch, B.B., Ebata, K., et al. (2017) A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discovery, 7, 963-972.
https://doi.org/10.1158/2159-8290.cd-17-0507
[29] Lee, J., Park, S.H., Chang, H., Kim, J.S., Choi, H.J., Lee, M.A., et al. (2012) Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary-Tract Cancer: A Multicentre, Open-Label, Randomised, Phase 3 Study. The Lancet Oncology, 13, 181-188.
https://doi.org/10.1016/s1470-2045(11)70301-1
[30] Malka, D., Cervera, P., Foulon, S., Trarbach, T., de la Fouchardière, C., Boucher, E., et al. (2014) Gemcitabine and Oxaliplatin with or without Cetuximab in Advanced Biliary-Tract Cancer (BINGO): A Randomised, Open-Label, Non-Comparative Phase 2 Trial. The Lancet Oncology, 15, 819-828.
https://doi.org/10.1016/s1470-2045(14)70212-8
[31] Gruenberger, B., Schueller, J., Heubrandtner, U., Wrba, F., Tamandl, D., Kaczirek, K., et al. (2010) Cetuximab, Gemcitabine, and Oxaliplatin in Patients with Unresectable Advanced or Metastatic Biliary Tract Cancer: A Phase 2 Study. The Lancet Oncology, 11, 1142-1148.
https://doi.org/10.1016/s1470-2045(10)70247-3
[32] Sohal, D.P.S., Mykulowycz, K., Uehara, T., Teitelbaum, U.R., Damjanov, N., Giantonio, B.J., et al. (2013) A Phase II Trial of Gemcitabine, Irinotecan and Panitumumab in Advanced Cholangiocarcinoma. Annals of Oncology, 24, 3061-3065.
https://doi.org/10.1093/annonc/mdt416
[33] Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., et al. (2005) Histone Demethylation by a Family of Jmjc Domain-Containing Proteins. Nature, 439, 811-816.
https://doi.org/10.1038/nature04433
[34] Dang, L. and Su, S.M. (2017) Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annual Review of Biochemistry, 86, 305-331.
https://doi.org/10.1146/annurev-biochem-061516-044732
[35] Yang, H., Ye, D., Guan, K. and Xiong, Y. (2012) IDH1 and IDH2 Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 18, 5562-5571.
https://doi.org/10.1158/1078-0432.ccr-12-1773
[36] Lee, H. and Ross, J.S. (2017) The Potential Role of Comprehensive Genomic Profiling to Guide Targeted Therapy for Patients with Biliary Cancer. Therapeutic Advances in Gastroenterology, 10, 507-520.
https://doi.org/10.1177/1756283x17698090
[37] Ilyas, S.I. and Gores, G.J. (2017) Emerging Molecular Therapeutic Targets for Cholangiocarcinoma. Journal of Hepatology, 67, 632-644.
https://doi.org/10.1016/j.jhep.2017.03.026
[38] Abou-Alfa, G.K., Macarulla, T., Javle, M.M., Kelley, R.K., Lubner, S.J., Adeva, J., et al. (2020) Ivosidenib in IDH1-Mutant, Chemotherapy-Refractory Cholangiocarcinoma (ClariDHy): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Oncology, 21, 796-807.
https://doi.org/10.1016/s1470-2045(20)30157-1
[39] Golub, D., Iyengar, N., Dogra, S., Wong, T., Bready, D., Tang, K., et al. (2019) Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology, 9, Article 417.
https://doi.org/10.3389/fonc.2019.00417
[40] Valle, J.W., Lamarca, A., Goyal, L., Barriuso, J. and Zhu, A.X. (2017) New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discovery, 7, 943-962.
https://doi.org/10.1158/2159-8290.cd-17-0245
[41] Hyman, D.M., Puzanov, I., Subbiah, V., Faris, J.E., Chau, I., Blay, J., et al. (2015) Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. New England Journal of Medicine, 373, 726-736.
https://doi.org/10.1056/nejmoa1502309
[42] Planchard, D., Smit, E.F., Groen, H.J.M., Mazieres, J., Besse, B., Helland, Å., et al. (2017) Dabrafenib Plus Trametinib in Patients with Previously Untreated BRAFV600E-Mutant Metastatic Non-Small-Cell Lung Cancer: An Open-Label, Phase 2 Trial. The Lancet Oncology, 18, 1307-1316.
https://doi.org/10.1016/s1470-2045(17)30679-4
[43] Taylor, M.H., Schmidt, E.V., Dutcus, C., Pinheiro, E.M., Funahashi, Y., Lubiniecki, G., et al. (2020) The LEAP Program: Lenvatinib Plus Pembrolizumab for the Treatment of Advanced Solid Tumors. Future Oncology, 17, 637-648.
https://doi.org/10.2217/fon-2020-0937
[44] Lin, J., Yang, X., Long, J., Zhao, S., Mao, J., Wang, D., et al. (2020) Pembrolizumab Combined with Lenvatinib as Non-First-Line Therapy in Patients with Refractory Biliary Tract Carcinoma. Hepatobiliary Surgery and Nutrition, 9, 414-424.
https://doi.org/10.21037/hbsn-20-338
[45] Yarchoan, M., Cope, L., Ruggieri, A.N., Anders, R.A., Noonan, A.M., Goff, L.W., et al. (2021) Multicenter Randomized Phase II Trial of Atezolizumab with or without Cobimetinib in Biliary Tract Cancers. Journal of Clinical Investigation, 131, e152670.
https://doi.org/10.1172/jci152670