[1]
|
Bai, Q., Han, K., Dong, K., Zheng, C., Zhang, Y., Long, Q., et al. (2020) Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. International Journal of Nanomedicine, 15, 9717-9743. https://doi.org/10.2147/ijn.s276001
|
[2]
|
Zhang, Y., Zhu, Y., Ma, P., Wu, H., Xiao, D., Zhang, Y., et al. (2023) Functional Carbohydrate-Based Hydrogels for Diabetic Wound Therapy. Carbohydrate Polymers, 312, Article 120823. https://doi.org/10.1016/j.carbpol.2023.120823
|
[3]
|
Li, Y., Leng, Y., Liu, Y., Zhong, J., Li, J., Zhang, S., et al. (2024) Advanced Multifunctional Hydrogels for Diabetic Foot Ulcer Healing: Active Substances and Biological Functions. Journal of Diabetes, 16, e13537. https://doi.org/10.1111/1753-0407.13537
|
[4]
|
Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., et al. (2021) Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells, 10, Article 655. https://doi.org/10.3390/cells10030655
|
[5]
|
Loots, M.A.M., Lamme, E.N., Zeegelaar, J., Mekkes, J.R., Bos, J.D. and Middelkoop, E. (1998) Differences in Cellular Infiltrate and Extracellular Matrix of Chronic Diabetic and Venous Ulcers versus Acute Wounds. Journal of Investigative Dermatology, 111, 850-857. https://doi.org/10.1046/j.1523-1747.1998.00381.x
|
[6]
|
Xiao, Y., Qian, J., Deng, X., Zhang, H., Wang, J., Luo, Z., et al. (2024) Macrophages Regulate Healing-Associated Fibroblasts in Diabetic Wound. Molecular Biology Reports, 51, Article No. 203. https://doi.org/10.1007/s11033-023-09100-1
|
[7]
|
Okonkwo, U. and DiPietro, L. (2017) Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 18, Article 1419. https://doi.org/10.3390/ijms18071419
|
[8]
|
Golledge, J. and Thanigaimani, S. (2021) Novel Therapeutic Targets for Diabetes-Related Wounds or Ulcers: An Update on Preclinical and Clinical Research. Expert Opinion on Therapeutic Targets, 25, 1061-1075. https://doi.org/10.1080/14728222.2021.2014816
|
[9]
|
Kimball, A., Schaller, M., Joshi, A., Davis, F.M., denDekker, A., Boniakowski, A., et al. (2018) Ly6C Hi Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1102-1114. https://doi.org/10.1161/atvbaha.118.310703
|
[10]
|
Yan, C., Chen, J., Wang, C., Yuan, M., Kang, Y., Wu, Z., et al. (2022) Milk Exosomes-Mediated miR-31-5p Delivery Accelerates Diabetic Wound Healing through Promoting Angiogenesis. Drug Delivery, 29, 214-228. https://doi.org/10.1080/10717544.2021.2023699
|
[11]
|
Baltzis, D., Eleftheriadou, I. and Veves, A. (2014) Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Advances in Therapy, 31, 817-836. https://doi.org/10.1007/s12325-014-0140-x
|
[12]
|
Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093. https://doi.org/10.1021/acs.accounts.0c00864
|
[13]
|
Kharaziha, M., Baidya, A. and Annabi, N. (2021) Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 33, Article 2100176. https://doi.org/10.1002/adma.202100176
|
[14]
|
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) ROS-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. https://doi.org/10.1016/j.biomaterials.2020.120286
|
[15]
|
Salazar, J.J., Ennis, W.J. and Koh, T.J. (2016) Diabetes Medications: Impact on Inflammation and Wound Healing. Journal of Diabetes and Its Complications, 30, 746-752. https://doi.org/10.1016/j.jdiacomp.2015.12.017
|
[16]
|
Huang, C., Dong, L., Zhao, B., Lu, Y., Huang, S., Yuan, Z., et al. (2022) Anti‐Inflammatory Hydrogel Dressings and Skin Wound Healing. Clinical and Translational Medicine, 12, e1094. https://doi.org/10.1002/ctm2.1094
|
[17]
|
Hunter, S., Langemo, D.K., Anderson, J., Hanson, D. and Thompson, P. (2010) Hyperbaric Oxygen Therapy for Chronic Wounds. Advances in Skin & Wound Care, 23, 116-119. https://doi.org/10.1097/01.asw.0000363517.55135.c2
|
[18]
|
Chen, L., Zheng, B., Xu, Y., Sun, C., Wu, W., Xie, X., et al. (2023) Nano Hydrogel-Based Oxygen-Releasing Stem Cell Transplantation System for Treating Diabetic Foot. Journal of Nanobiotechnology, 21, Article No. 202. https://doi.org/10.1186/s12951-023-01925-z
|
[19]
|
Fowler, E.M., Vesely, N., Johnson, V., Harwood, J., Tran, J. and Amberry, T. (2003) Wound Care for Patients with Diabetes. Advances in Skin & Wound Care, 16, 342-346. https://doi.org/10.1097/00129334-200312000-00009
|
[20]
|
Li, M., Hou, Q., Zhong, L., Zhao, Y. and Fu, X. (2021) Macrophage Related Chronic Inflammation in Non-Healing Wounds. Frontiers in Immunology, 12, Article 681710. https://doi.org/10.3389/fimmu.2021.681710
|
[21]
|
Aitcheson, S.M., Frentiu, F.D., Hurn, S.E., Edwards, K. and Murray, R.Z. (2021) Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, Article 4917. https://doi.org/10.3390/molecules26164917
|
[22]
|
Kim, S.Y. and Nair, M.G. (2019) Macrophages in Wound Healing: Activation and Plasticity. Immunology & Cell Biology, 97, 258-267. https://doi.org/10.1111/imcb.12236
|
[23]
|
Sharifiaghdam, M., Shaabani, E., Faridi-Majidi, R., De Smedt, S.C., Braeckmans, K. and Fraire, J.C. (2022) Macrophages as a Therapeutic Target to Promote Diabetic Wound Healing. Molecular Therapy, 30, 2891-2908. https://doi.org/10.1016/j.ymthe.2022.07.016
|
[24]
|
Liang, Y., He, J. and Guo, B. (2021) Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 15, 12687-12722. https://doi.org/10.1021/acsnano.1c04206
|
[25]
|
Xu, Y., Hu, Q., Wei, Z., Ou, Y., Cao, Y., Zhou, H., et al. (2023) Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomaterials Research, 27, Article 36. https://doi.org/10.1186/s40824-023-00379-6
|
[26]
|
Boodhoo, K., Vlok, M., Tabb, D.L., Myburgh, K.H. and van de Vyver, M. (2021) Dysregulated Healing Responses in Diabetic Wounds Occur in the Early Stages Postinjury. Journal of Molecular Endocrinology, 66, 141-155. https://doi.org/10.1530/jme-20-0256
|
[27]
|
Liu, J., Qu, S., Suo, Z. and Yang, W. (2021) Functional Hydrogel Coatings. National Science Review, 8, nwaa254. https://doi.org/10.1093/nsr/nwaa254
|
[28]
|
Hamidi, M., Azadi, A. and Rafiei, P. (2008) Hydrogel Nanoparticles in Drug Delivery. Advanced Drug Delivery Reviews, 60, 1638-1649. https://doi.org/10.1016/j.addr.2008.08.002
|
[29]
|
Li, Q., Wang, D., Jiang, Z., Li, R., Xue, T., Lin, C., et al. (2022) Advances of Hydrogel Combined with Stem Cells in Promoting Chronic Wound Healing. Frontiers in Chemistry, 10, Article 1038839. https://doi.org/10.3389/fchem.2022.1038839
|
[30]
|
Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., et al. (2019) Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics, 9, 65-76. https://doi.org/10.7150/thno.29766
|
[31]
|
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) Ros-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. https://doi.org/10.1016/j.biomaterials.2020.120286
|
[32]
|
Xiong, Y., Chen, L., Liu, P., Yu, T., Lin, C., Yan, C., et al. (2021) All‐in‐One: Multifunctional Hydrogel Accelerates Oxidative Diabetic Wound Healing through Timed‐Release of Exosome and Fibroblast Growth Factor. Small, 18, Article 2104229. https://doi.org/10.1002/smll.202104229
|
[33]
|
Chen, T., Wen, T., Dai, N. and Hsu, S. (2021) Cryogel/Hydrogel Biomaterials and Acupuncture Combined to Promote Diabetic Skin Wound Healing through Immunomodulation. Biomaterials, 269, Article 120608. https://doi.org/10.1016/j.biomaterials.2020.120608
|
[34]
|
Zhu, W., Dong, Y., Xu, P., Pan, Q., Jia, K., Jin, P., et al. (2022) A Composite Hydrogel Containing Resveratrol-Laden Nanoparticles and Platelet-Derived Extracellular Vesicles Promotes Wound Healing in Diabetic Mice. Acta Biomaterialia, 154, 212-230. https://doi.org/10.1016/j.actbio.2022.10.038
|
[35]
|
Qi, X., Cai, E., Xiang, Y., Zhang, C., Ge, X., Wang, J., et al. (2023) An Immunomodulatory Hydrogel by Hyperthermia‐assisted Self‐Cascade Glucose Depletion and ROS Scavenging for Diabetic Foot Ulcer Wound Therapeutics. Advanced Materials, 35, Article 2306632. https://doi.org/10.1002/adma.202306632
|