[1]
|
Liu, J., Ouyang, X., Shen, J., Li, Y., Sun, W., Jiang, W., et al. (2020) Nitrogen and Phosphorus Runoff Losses Were Influenced by Chemical Fertilization but Not by Pesticide Application in a Double Rice-Cropping System in the Subtropical Hilly Region of China. Science of the Total Environment, 715, Article 136852. https://doi.org/10.1016/j.scitotenv.2020.136852
|
[2]
|
蔡佳佩, 朱坚, 彭华, 等. 有机肥施用对田面水氮磷流失风险的影响[J]. 环境科学研究, 2020, 33(1): 210-217.
|
[3]
|
武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230.
|
[4]
|
Sivasakthi, S., Usharani, G. and Saranraj, P. (2014) Biocontrol Potentiality of Plant Growth Promoting Bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A Review. African Journal of Agricultural Research, 9, 1265-1277. https://doi.org/10.5897/AJAR2013.7914
|
[5]
|
穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127.
|
[6]
|
Wang, Y., Li, W., Du, B. and Li, H. (2021) Effect of Biochar Applied with Plant Growth-Promoting Rhizobacteria (PGPR) on Soil Microbial Community Composition and Nitrogen Utilization in Tomato. Pedosphere, 31, 872-881. https://doi.org/10.1016/s1002-0160(21)60030-9
|
[7]
|
秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1): 59-64.
|
[8]
|
Wei, M., Liu, X., He, Y., Xu, X., Wu, Z., Yu, K., et al. (2020) Biochar Inoculated with Pseudomonas putida Improves Grape (Vitis vinifera L.) Fruit Quality and Alters Bacterial Diversity. Rhizosphere, 16, Article 100261. https://doi.org/10.1016/j.rhisph.2020.100261
|
[9]
|
Jinal, H.N., Gopi, K., Prittesh, P., Kartik, V.P. and Amaresan, N. (2019) Phytoextraction of Iron from Contaminated Soils by Inoculation of Iron-Tolerant Plant Growth-Promoting Bacteria in Brassica juncea L. Czern. Environmental Science and Pollution Research, 26, 32815-32823. https://doi.org/10.1007/s11356-019-06394-2
|
[10]
|
Kudoyarova, G., Arkhipova, T., Korshunova, T., Bakaeva, M., Loginov, O. and Dodd, I.C. (2019) Phytohormone Mediation of Interactions between Plants and Non-Symbiotic Growth Promoting Bacteria under Edaphic Stresses. Frontiers in Plant Science, 10, Article 1368. https://doi.org/10.3389/fpls.2019.01368
|
[11]
|
Park, Y.G., Mun, B.G., Kang, S.M., Hussain, A. and Yun, B.-W. (2017) Bacillus aryabhattai SRB02 Tolerates Oxidative and Nitrosative Stress and Promotes the Growth of Soybean by Modulating the Production of Phytohormones. PLOS ONE, 12, e0173203. https://doi.org/10.1371/journal.pone.0173203
|
[12]
|
Lee, J.Y., Shim, J.M., Yao, Z., Liu, X., Lee, K.W., Kim, H., et al. (2016) Antimicrobial Activity of Bacillus amyloliquefaciens EMD17 Isolated from Cheonggukjang and Potential Use as a Starter for Fermented Soy Foods. Food Science and Biotechnology, 25, 525-532. https://doi.org/10.1007/s10068-016-0073-z
|
[13]
|
张银翠, 姚拓, 赵桂琴, 等. 耐盐促生菌筛选鉴定及对盐胁迫燕麦生长的影响[J]. 草地学报, 2021, 29(12): 2645-2652.
|
[14]
|
Sun, L., Qiu, F., Zhang, X., Dai, X., Dong, X. and Song, W. (2007) Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis. Microbial Ecology, 55, 415-424. https://doi.org/10.1007/s00248-007-9287-1
|
[15]
|
Romero, F.M., Marina, M. and Pieckenstain, F.L. (2014) The Communities of Tomato (Solanum lycopersicum L.) Leaf Endophytic Bacteria, Analyzed by 16s-Ribosomal RNA Gene Pyrosequencing. FEMS Microbiology Letters, 351, 187-194. https://doi.org/10.1111/1574-6968.12377
|
[16]
|
Kandel, S.L., Herschberger, N., Kim, S.H. and Doty, S.L. (2015) Diazotrophic Endophytes of Poplar and Willow for Growth Promotion of Rice Plants in Nitrogen‐Limited Conditions. Crop Science, 55, 1765-1772. https://doi.org/10.2135/cropsci2014.08.0570
|
[17]
|
Rangeshwaran, R., Wasnikar, A., Prasad, R., et al. (2002) Isolation of Endophytic Bacteria for Biological Control of Wilt Pathogens. Journal of Biological Control, 16(2): 125-133.
|
[18]
|
冯宝珍, 李培谦, 刘缙, 等. 番茄内生菌的分离鉴定及菌株FQ-G3抗病促生特性[J]. 微生物学报, 2024, 64(1): 208-219.
|
[19]
|
王彦譞, 魏靖宇, 李惠琳, 等. 红掌拮抗内生菌Y-54的分离、鉴定及其生防作用研究[J]. 植物保护学报, 2023, 50(5): 1327-1335.
|
[20]
|
Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I. and Pieterse, C.M.J. (2013) Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria. Plant Physiology, 162, 304-318. https://doi.org/10.1104/pp.112.212597
|
[21]
|
王彪, 潘英豪, 侯佳蓝, 等. 一种桑树细菌性病原内生拮抗细菌的筛选、鉴定及其生防活性[J]. 微生物前沿, 2019, 8(3): 110-120.
|
[22]
|
Sunitha, V.H., Devi, D.N. and Srinivas, C. (2013) Extracellular Enzymatic Activity of Endophytic Fungal Strains Iso-lated from Medicinal Plants. World Journal of Agricultural Sciences, 9, 1-9.
|
[23]
|
陈伟, 舒健虹, 陈莹, 等. 黑麦草根际铁载体产生菌WN-H3的分离鉴定及其产铁载体培养条件的优化[J]. 生物技术通报, 2016, 32(10): 219-226.
|
[24]
|
Pan, X., Welti, R. and Wang, X. (2010) Quantitative Analysis of Major Plant Hormones in Crude Plant Extracts by High-Performance Liquid Chromatography-Mass Spectrometry. Nature Protocols, 5, 986-992. https://doi.org/10.1038/nprot.2010.37
|
[25]
|
刘鹏, 毕江涛, 罗成科, 等. 耐盐菌对盐胁迫下水稻种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2022, 41(2): 246-256.
|
[26]
|
Zhang, W., Wu, J., Weng, L., Zhang, H., Zhang, J. and Wu, A. (2020) An Improved Phenol-Sulfuric Acid Method for the Determination of Carbohydrates in the Presence of Persulfate. Carbohydrate Polymers, 227, Article 115332. https://doi.org/10.1016/j.carbpol.2019.115332
|
[27]
|
Hatzoglou, A., Prekezes, J., Tsami, M. and Castanas, E. (1992) Protein Measurement of Particulate and Solubilized Ovine Liver Membranes. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 29, 659-662. https://doi.org/10.1177/000456329202900607
|
[28]
|
Chen, T. and Zhang, B. (2016) Measurements of Proline and Malondialdehyde Content and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton. Bio-Protocol, 6, e1913. https://doi.org/10.21769/bioprotoc.1913
|
[29]
|
Vicente, A.R., Martínez, G.A., Chaves, A.R. and Civello, P.M. (2006) Effect of Heat Treatment on Strawberry Fruit Damage and Oxidative Metabolism during Storage. Postharvest Biology and Technology, 40, 116-122. https://doi.org/10.1016/j.postharvbio.2005.12.012
|
[30]
|
Xu, W., Peng, X., Luo, Y., Wang, J., Guo, X. and Huang, K. (2009) Physiological and Biochemical Responses of Grapefruit Seed Extract Dip on ‘Redglobe’ Grape. LWT-Food Science and Technology, 42, 471-476. https://doi.org/10.1016/j.lwt.2008.09.002
|
[31]
|
Zhou, P., Smith, N.L. and Lee, C.Y. (1993) Potential Purification and Some Properties of Monroe Apple Peel Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 41, 532-536. https://doi.org/10.1021/jf00028a004
|
[32]
|
Sahu, P.K., Singh, S., Gupta, A., Singh, U.B., Brahmaprakash, G.P. and Saxena, A.K. (2019) Antagonistic Potential of Bacterial Endophytes and Induction of Systemic Resistance against Collar Rot Pathogen Sclerotium rolfsii in Tomato. Biological Control, 137, Article 104014. https://doi.org/10.1016/j.biocontrol.2019.104014
|
[33]
|
张锦锦, 孙雨婷, 郭烨, 等. 桑树内生菌的生物活性及应用前景[J]. 河北农业科学, 2023, 27(1): 85-90, 98.
|
[34]
|
孙萌. 铁载体高产菌株的ARTP选育及其铁载体产量提高机理的初步分析[D]: [硕士学位论文]. 无锡: 江南大学, 2017.
|
[35]
|
张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42(3): 323-328.
|
[36]
|
Gaonkar, S.K. and Furtado, I.J. (2020) Characterization of Extracellular Protease from the Haloarcheon Halococcus sp. Strain GUGFAWS-3 (MF425611). Current Microbiology, 77, 1024-1034. https://doi.org/10.1007/s00284-020-01896-6
|
[37]
|
Tonnessen, B.W., Manosalva, P., Lang, J.M., Baraoidan, M., Bordeos, A., Mauleon, R., et al. (2014) Rice Phenylalanine Ammonia-Lyase Gene OsPAL4 Is Associated with Broad Spectrum Disease Resistance. Plant Molecular Biology, 87, 273-286. https://doi.org/10.1007/s11103-014-0275-9
|
[38]
|
Jia, H., Zhao, P., Wang, B., Tariq, P., Zhao, F., Zhao, M., et al. (2015) Overexpression of Polyphenol Oxidase Gene in Strawberry Fruit Delays the Fungus Infection Process. Plant Molecular Biology Reporter, 34, 592-606. https://doi.org/10.1007/s11105-015-0946-y
|
[39]
|
张爱梅, 吴菊艳, 韩雪英, 等. 沙棘根瘤内生细菌中抑菌促生菌株的筛选和鉴定[J]. 微生物学通报, 2019, 46(5): 1041-1051.
|
[40]
|
Rajkumar, M., Ae, N. and Freitas, H. (2009) Endophytic Bacteria and Their Potential to Enhance Heavy Metal Phytoextraction. Chemosphere, 77, 153-160. https://doi.org/10.1016/j.chemosphere.2009.06.047
|
[41]
|
周璇, 宋凤斌. 不同种植方式下玉米叶片叶绿素和可溶性蛋白含量变化[J]. 土壤与作物, 2012, 1(1): 41-49.
|
[42]
|
刘方春, 马海林, 马丙尧, 等. 干旱环境下接种根际促生细菌对核桃苗光合特性的影响[J]. 林业科学, 2015, 51(7): 84-90.
|
[43]
|
Singh, R.P. and Jha, P.N. (2017) The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Frontiers in Microbiology, 8, Article 1945. https://doi.org/10.3389/fmicb.2017.01945
|
[44]
|
Sharma, I.P. and Sharma, A.K. (2016) Physiological and Biochemical Changes in Tomato Cultivar PT-3 with Dual Inoculation of Mycorrhiza and PGPR against Root-Knot Nematode. Symbiosis, 71, 175-183. https://doi.org/10.1007/s13199-016-0423-x
|