[1]
|
Wang, L., Jiao, Y., Yao, S., Li, P., Wang, R. and Chen, G. (2019) MOF-Derived NIO/Ni Architecture Encapsulated into N-Doped Carbon Nanotubes for Advanced Asymmetric Supercapacitors. Inorganic Chemistry Frontiers, 6, 1553-1560. https://doi.org/10.1039/c9qi00274j
|
[2]
|
Ruan, Y., Wang, C. and Jiang, J. (2016) Nanostructured Ni Compounds as Electrode Materials Towards High-Performance Electrochemical Capacitors. Journal of Materials Chemistry A, 4, 14509-14538. https://doi.org/10.1039/c6ta05104a
|
[3]
|
Sun, J., Xu, C. and Chen, H. (2021) A Review on the Synthesis of CuCo2O4-Based Electrode Materials and Their Applications in Supercapacitors. Journal of Materiomics, 7, 98-126. https://doi.org/10.1016/j.jmat.2020.07.013
|
[4]
|
Zheng, S., Li, X., Yan, B., Hu, Q., Xu, Y., Xiao, X., et al. (2017) Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 7, Article 1602733. https://doi.org/10.1002/aenm.201602733
|
[5]
|
Yun, Q., Li, L., Hu, Z., Lu, Q., Chen, B. and Zhang, H. (2019) Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 32, Article 1903826. https://doi.org/10.1002/adma.201903826
|
[6]
|
Zhang, X., Lu, Q., Liu, H., Li, K. and Wei, M. (2020) Nature-Inspired Design of Nis/Carbon Microspheres for High-Performance Hybrid Supercapacitors. Applied Surface Science, 528, Article 146976. https://doi.org/10.1016/j.apsusc.2020.146976
|
[7]
|
Zhao, S., Wang, Z., He, Y., Jiang, B., Harn, Y., Liu, X., et al. (2016) Interconnected Ni(HCO3)2 Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties. ACS Energy Letters, 2, 111-116. https://doi.org/10.1021/acsenergylett.6b00582
|
[8]
|
Liu, M., Wang, Q., Liu, Z., Zhao, Y., Lai, X., Bi, J., et al. (2020) In-situ N-Doped Mnco3 Anode Material via One-Step Solvothermal Synthesis: Doping Mechanisms and Enhanced Electrochemical Performances. Chemical Engineering Journal, 383, Article 123161. https://doi.org/10.1016/j.cej.2019.123161
|
[9]
|
Natarajan, S., Ulaganathan, M. and Aravindan, V. (2021) Building Next-Generation Supercapacitors with Battery Type Ni(OH)2. Journal of Materials Chemistry A, 9, 15542-15585. https://doi.org/10.1039/d1ta03262c
|
[10]
|
Mu, Y., Wang, L., Zhao, Y., Liu, M., Zhang, W., Wu, J., et al. (2017) 3D Flower-Like MnCO3 Microcrystals: Evolution Mechanisms of Morphology and Enhanced Electrochemical Performances. Electrochimica Acta, 251, 119-128. https://doi.org/10.1016/j.electacta.2017.08.104
|
[11]
|
Wang, G., Yan, Z., Wang, N., Xiang, M. and Xu, Z. (2021) Nio/Ni Metal-Organic Framework Nanostructures for Asymmetric Supercapacitors. ACS Applied Nano Materials, 4, 9034-9043. https://doi.org/10.1021/acsanm.1c01628
|
[12]
|
Adhikari, S., Selvaraj, S., Ji, S. and Kim, D. (2020) Encapsulation of CO3O4 Nanocone Arrays via Ultrathin Nio for Superior Performance Asymmetric Supercapacitors. Small, 16, Article 2005414. https://doi.org/10.1002/smll.202005414
|
[13]
|
Zhang, L.L. and Zhao, X.S. (2009) Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38, 2520-2531. https://doi.org/10.1039/b813846j
|
[14]
|
孙世雄. 非对称电容器电极材料的制备及电化学电容性能的研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2014.
|
[15]
|
朱伟伟. 膨胀石墨电极材料的制备及其电化学性能研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2021.
|
[16]
|
李青. 三维花状金属氧化物纳米材料的合成及其电化学性能研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2014.
|
[17]
|
Liu, S., Wei, L. and Wang, H. (2020) Review on Reliability of Supercapacitors in Energy Storage Applications. Applied Energy, 278, Article 115436. https://doi.org/10.1016/j.apenergy.2020.115436
|
[18]
|
彭辉. 聚合物基特殊结构碳纳米材料构筑新型超级电容器研究[D]: [博士学位论文]. 兰州: 西北师范大学, 2016.
|
[19]
|
Şahin, M., Blaabjerg, F. and Sangwongwanich, A. (2022) A Comprehensive Review on Supercapacitor Applications and Developments. Energies, 15, Article 674. https://doi.org/10.3390/en15030674
|
[20]
|
Lamba, P., Singh, P., Singh, P., Singh, P., Bharti, Kumar, A., et al. (2022) Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. Journal of Energy Storage, 48, Article 103871. https://doi.org/10.1016/j.est.2021.103871
|
[21]
|
Pershaanaa, M., Bashir, S., Ramesh, S. and Ramesh, K. (2022) Every Bite of Supercap: A Brief Review on Construction and Enhancement of Supercapacitor. Journal of Energy Storage, 50, Article 104599. https://doi.org/10.1016/j.est.2022.104599
|
[22]
|
Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H. and Lee, J.H. (2021) 0D to 3D Carbon-Based Networks Combined with Pseudocapacitive Electrode Material for High Energy Density Supercapacitor: A Review. Chemical Engineering Journal, 403, Article 126352. https://doi.org/10.1016/j.cej.2020.126352
|
[23]
|
Liu, Y., Shearing, P.R., He, G. and Brett, D.J.L. (2021) Supercapacitors: History, Theory, Emerging Technologies, and Applications. In: Gao, Y.-J., Song, W.X., Liu, J.L. and Bashir, S., Eds., Advances in Sustainable Energy, Springer International Publishing, 417-449. https://doi.org/10.1007/978-3-030-74406-9_15
|
[24]
|
华经产业研究. 2021年中国超级电容器行业现状、市场竞争格局及重点企业分析[EB/OL]. https://mbd.baidu.com/newspage/data/landingsuper?sid_for_share=&isBdboxFrom=1&pageType=1&urlext=%7B%22cuid%22%3A%22_uSQi_ayS8_t8HaB0uSOila8vagNaSaWliHCi08ABiKk0qqSB%22%7D&context=%7B%22nid%22%3A%22news_10075988865649352227%22,%22sourceFrom%22%3A%22search%22%7D, 2022-09-07.
|
[25]
|
Yan, J., Wang, Q., Wei, T. and Fan, Z. (2013) Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 4, Article 1300816. https://doi.org/10.1002/aenm.201300816
|
[26]
|
Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y. and Ding, Y. (2009) Progress in Electrical Energy Storage System: A Critical Review. Progress in Natural Science, 19, 291-312. https://doi.org/10.1016/j.pnsc.2008.07.014
|
[27]
|
Wei, Y.-Z., Fang, B., Iwasa, S. and Kumagai, M. (2005) A Novel Electrode Material for Electric Double-Layer Capacitors. Journal of Power Sources, 141, 386-391. https://doi.org/10.1016/j.jpowsour.2004.10.001
|
[28]
|
Pan, Z., Lu, Z., Xu, L. and Wang, D. (2020) A Robust 2D Porous Carbon Nanoflake Cathode for High Energy-Power Density Zn-Ion Hybrid Supercapacitor Applications. Applied Surface Science, 510, Article 145384. https://doi.org/10.1016/j.apsusc.2020.145384
|
[29]
|
Li, Z., Li, L., Li, Z., Liao, H. and Zhang, H. (2016) Ultrathin Carbon Gauze for High-Rate Supercapacitor. Electrochimica Acta, 222, 990-998. https://doi.org/10.1016/j.electacta.2016.11.067
|
[30]
|
Bao, W., Yu, B., Li, W., Fan, H., Bai, J. and Ren, Z. (2015) CO3O4/Nitrogen-Doped Graphene/Carbon Nanotubes: An Innovative Ternary Composite with Enhanced Electrochemical Performance. Journal of Alloys and Compounds, 647, 873-879. https://doi.org/10.1016/j.jallcom.2015.06.128
|
[31]
|
Sun, J., Wu, C., Sun, X., Hu, H., Zhi, C., Hou, L., et al. (2017) Recent Progresses in High-Energy-Density All Pseudocapacitive-Electrode-Materials-Based Asymmetric Supercapacitors. Journal of Materials Chemistry A, 5, 9443-9464. https://doi.org/10.1039/c7ta00932a
|
[32]
|
Cuentas-Gallegos, A.K., Lira-Cantú, M., Casañ-Pastor, N. and Gómez-Romero, P. (2005) Nanocomposite Hybrid Molecular Materials for Application in Solid-State Electrochemical Supercapacitors. Advanced Functional Materials, 15, 1125-1133. https://doi.org/10.1002/adfm.200400326
|
[33]
|
Park, J.H., Ko, J.M., Park, O.O. and Kim, D. (2002) Capacitance Properties of Graphite/Polypyrrole Composite Electrode Prepared by Chemical Polymerization of Pyrrole on Graphite Fiber. Journal of Power Sources, 105, 20-25. https://doi.org/10.1016/s0378-7753(01)00915-6
|
[34]
|
Zhou, K., He, Y., Xu, Q., Zhang, Q., Zhou, A., Lu, Z., et al. (2018) A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application. ACS Nano, 12, 5888-5894. https://doi.org/10.1021/acsnano.8b02055
|
[35]
|
Huang, H., Abbas, S.C., Deng, Q., Ni, Y., Cao, S. and Ma, X. (2021) An All-Paper, Scalable and Flexible Supercapacitor Based on Vertically Aligned Polyaniline (PANI) Nano-Dendrites@fibers. Journal of Power Sources, 498, Article 229886. https://doi.org/10.1016/j.jpowsour.2021.229886
|
[36]
|
Li, B., Wen, H., Cui, Y., Zhou, W., Qian, G. and Chen, B. (2016) Emerging Multifunctional Metal-Organic Framework Materials. Advanced Materials, 28, 8819-8860. https://doi.org/10.1002/adma.201601133
|
[37]
|
Zhu, J., Shen, X., Kong, L., Zhu, G., Ji, Z., Xu, K., et al. (2019) MOF Derived Cop-Decorated Nitrogen-Doped Carbon Polyhedrons/Reduced Graphene Oxide Composites for High Performance Supercapacitors. Dalton Transactions, 48, 10661-10668. https://doi.org/10.1039/c9dt01629e
|
[38]
|
Ding, S. and Wang, W. (2013) Covalent Organic Frameworks (COFs): From Design to Applications. Chemical Society Reviews, 42, 548-568. https://doi.org/10.1039/c2cs35072f
|
[39]
|
Zhao, X., Pachfule, P. and Thomas, A. (2021) Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chemical Society Reviews, 50, 6871-6913. https://doi.org/10.1039/d0cs01569e
|
[40]
|
Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170. https://doi.org/10.1126/science.1120411
|
[41]
|
Herren, F., Fischer, P., Ludi, A. and Halg, W. (1980) Cheminform Abstract: Neutron Diffraction Study of Prussian Blue, FE4(FE(CN)6)3.XH2O. Location of Water Molecules and Long-Range Magnetic Order. Chemischer Informationsdienst, 11, 956-959. https://doi.org/10.1002/chin.198028083
|
[42]
|
Keggin, J.F. and Miles, F.D. (1936) Structures and Formulæ of the Prussian Blues and Related Compounds. Nature, 137, 577-578. https://doi.org/10.1038/137577a0
|
[43]
|
Ivanov, V.D. (2019) Four Decades of Electrochemical Investigation of Prussian Blue. Ionics, 26, 531-547. https://doi.org/10.1007/s11581-019-03292-y
|
[44]
|
Wu, S., Feng, Q., Zhou, S., Zhao, H., Xu, X., Su, Q., et al. (2021) Core-Shell Shaped Ni2cohcf@ppy Microspheres from Prussian Blue Analogues for High Performance Asymmetric Supercapacitors. Nanotechnology, 32, Article 445402. https://doi.org/10.1088/1361-6528/ac17c2
|
[45]
|
Wei, Y., Zhang, P., Soomro, R.A., Zhu, Q. and Xu, B. (2021) Advances in the Synthesis of 2D Mxenes. Advanced Materials, 33, Article 2103148. https://doi.org/10.1002/adma.202103148
|
[46]
|
Sun, B., Lu, Q., Chen, K., Zheng, W., Liao, Z., Lopatik, N., et al. (2022) Redox-Active Metaphosphate-Like Terminals Enable High-Capacity Mxene Anodes for Ultrafast Na-Ion Storage. Advanced Materials, 34, Article 2108682. https://doi.org/10.1002/adma.202108682
|
[47]
|
深圳荣乐电子. 超级电容器的应用领域有哪些? 风华超级电容器有什么特性? [EB/OL]. http://www.rongledz.com/xingyezixun/39-369.html, 2022-05-05.
|