[1]
|
Du, L. and Ha, C. (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 49, 643-654. https://doi.org/10.1016/j.gtc.2020.07.005
|
[2]
|
Bai, J., Wang, Y., Li, F., Wu, Y., Chen, J., Li, M., et al. (2024) Research Advancements and Perspectives of Inflammatory Bowel Disease: A Comprehensive Review. Science Progress, 107, 1-37. https://doi.org/10.1177/00368504241253709
|
[3]
|
Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S.C., Ferrante, M., Shen, B., et al. (2020) Ulcerative Colitis. Nature Reviews Disease Primers, 6, Article No. 74. https://doi.org/10.1038/s41572-020-0205-x
|
[4]
|
Guo, M. and Wang, X. (2023) Pathological Mechanism and Targeted Drugs of Ulcerative Colitis: A Review. Medicine, 102, e35020. https://doi.org/10.1097/md.0000000000035020
|
[5]
|
王少鑫, 浦江, 刘超群, 等. 炎症因子TNF-α、IL-6和IL-4在溃疡性结肠炎中的表达及临床意义[J]. 胃肠病学和肝病学杂志, 2015, 24(1): 104-106.
|
[6]
|
Griffiths, O.R., Landon, J., Coxon, R.E., Morris, K., James, P. and Adams, R. (2020) Inflammatory Bowel Disease and Targeted Oral Anti-TNFα therapy. Advances in Protein Chemistry and Structural Biology, 119, 157-198. https://doi.org/10.1016/bs.apcsb.2019.08.009
|
[7]
|
Vulliemoz, M., Brand, S., Juillerat, P., Mottet, C., Ben-Horin, S. and Michetti, P. (2020) TNF-Alpha Blockers in Inflammatory Bowel Diseases: Practical Recommendations and a User’s Guide: An Update. Digestion, 101, 16-26. https://doi.org/10.1159/000506898
|
[8]
|
Lamb, C.A., O’Byrne, S., Keir, M.E. and Butcher, E.C. (2018) Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 12, S653-S668. https://doi.org/10.1093/ecco-jcc/jjy060
|
[9]
|
Gamliel, A., Werner, L., Pinsker, M., Salamon, N., Weiss, B. and Shouval, D.S. (2020) Circulating α4β7+ Memory T Cells in Pediatric IBD Patients Express a Polyclonal T Cell Receptor Repertoire. Clinical and Experimental Gastroenterology, 13, 439-447. https://doi.org/10.2147/ceg.s271565
|
[10]
|
Cluny, N.L., Nyuyki, K.D., Almishri, W., Griffin, L., Lee, B.H., Hirota, S.A., et al. (2022) Recruitment of α4β7 Monocytes and Neutrophils to the Brain in Experimental Colitis Is Associated with Elevated Cytokines and Anxiety-Like Behavior. Journal of Neuroinflammation, 19, Article No. 73. https://doi.org/10.1186/s12974-022-02431-z
|
[11]
|
Zhang, H., Zheng, Y., Pan, Y., Lin, C., Wang, S., Yan, Z., et al. (2020) A Mutation That Blocks Integrin α4β7 Activation Prevents Adaptive Immune-Mediated Colitis without Increasing Susceptibility to Innate Colitis. BMC Biology, 18, Article No. 73. https://doi.org/10.1186/s12915-020-00784-6
|
[12]
|
Yan, J., Ding, X., Wu, J., Liu, A., Fang, L. and Xu, Y. (2024) Real-Life Effectiveness and Safety of Vedolizumab in Moderate-to-Severe Ulcerative Colitis: A Single-Center Experience in Northern China. Medicine, 103, e38759. https://doi.org/10.1097/md.0000000000038759
|
[13]
|
Dhillon, S. (2022) Carotegrast Methyl: First Approval. Drugs, 82, 1011-1016. https://doi.org/10.1007/s40265-022-01732-0
|
[14]
|
Verstockt, B., Salas, A., Sands, B.E., Abraham, C., Leibovitzh, H., Neurath, M.F., et al. (2023) IL-12 and IL-23 Pathway Inhibition in Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 20, 433-446. https://doi.org/10.1038/s41575-023-00768-1
|
[15]
|
Jefremow, A. and Neurath, M.F. (2020) All Are Equal, Some Are More Equal: Targeting IL 12 and 23 in IBD—A Clinical Perspective. ImmunoTargets and Therapy, 9, 289-297. https://doi.org/10.2147/itt.s282466
|
[16]
|
Zhang, W., Zhong, G., Ren, X. and Li, M. (2024) Research Progress of Ustekinumab in the Treatment of Inflammatory Bowel Disease. Frontiers in Immunology, 15, Article 1322054. https://doi.org/10.3389/fimmu.2024.1322054
|
[17]
|
Scheibe, K., Backert, I., Wirtz, S., Hueber, A., Schett, G., Vieth, M., et al. (2016) IL-36R Signalling Activates Intestinal Epithelial Cells and Fibroblasts and Promotes Mucosal Healing in vivo. Gut, 66, 823-838. https://doi.org/10.1136/gutjnl-2015-310374
|
[18]
|
Russell, S.E., Horan, R.M., Stefanska, A.M., Carey, A., Leon, G., Aguilera, M., et al. (2016) Il-36α Expression Is Elevated in Ulcerative Colitis and Promotes Colonic Inflammation. Mucosal Immunology, 9, 1193-1204. https://doi.org/10.1038/mi.2015.134
|
[19]
|
Harusato, A., Abo, H., Ngo, V.L., Yi, S.W., Mitsutake, K., Osuka, S., et al. (2017) IL-36γ Signaling Controls the Induced Regulatory T Cell-Th9 Cell Balance via NFκB Activation and STAT Transcription Factors. Mucosal Immunology, 10, 1455-1467. https://doi.org/10.1038/mi.2017.21
|
[20]
|
Zhu, J., Xu, Y., Li, Z., Liu, S., Fu, W. and Wei, Y. (2022) Interleukin-36β Exacerbates DSS-Induce Acute Colitis via Inhibiting Foxp3+ Regulatory T Cell Response and Increasing Th2 Cell Response. International Immunopharmacology, 108, Article 108762. https://doi.org/10.1016/j.intimp.2022.108762
|
[21]
|
Philips, R.L., Wang, Y., Cheon, H., Kanno, Y., Gadina, M., Sartorelli, V., et al. (2022) The JAK-STAT Pathway at 30: Much Learned, Much More to Do. Cell, 185, 3857-3876. https://doi.org/10.1016/j.cell.2022.09.023
|
[22]
|
Salas, A., Hernandez-Rocha, C., Duijvestein, M., Faubion, W., McGovern, D., Vermeire, S., et al. (2020) JAK-STAT Pathway Targeting for the Treatment of Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 17, 323-337. https://doi.org/10.1038/s41575-020-0273-0
|
[23]
|
Li, Y., Yang, X., Han, J., Bai, B., Li, Y., Shang, C., et al. (2023) Peimisine Ameliorates DSS-Induced Colitis by Suppressing Jak-Stat Activation and Alleviating Gut Microbiota Dysbiosis in Mice. Journal of Pharmacy and Pharmacology, 76, 545-558. https://doi.org/10.1093/jpp/rgad091
|
[24]
|
Li, J., Huang, Y., Zhang, Y., Liu, P., Liu, M., Zhang, M., et al. (2023) S1P/S1PR Signaling Pathway Advancements in Autoimmune Diseases. Biomolecules and Biomedicine, 23, 922-935.
|
[25]
|
Sun, G., Wang, B., Wu, X., Cheng, J., Ye, J., Wang, C., et al. (2024) How Do Sphingosine-1-Phosphate Affect Immune Cells to Resolve Inflammation? Frontiers in Immunology, 15, Article 1362459. https://doi.org/10.3389/fimmu.2024.1362459
|
[26]
|
Zou, F., Wang, S., Xu, M., Wu, Z. and Deng, F. (2023) The Role of Sphingosine-1-Phosphate in the Gut Mucosal Microenvironment and Inflammatory Bowel Diseases. Frontiers in Physiology, 14, Article 1235656. https://doi.org/10.3389/fphys.2023.1235656
|
[27]
|
Iwatani, S., Iijima, H., Otake, Y., Amano, T., Tani, M., Yoshihara, T., et al. (2020) Novel Mass Spectrometry‐Based Comprehensive Lipidomic Analysis of Plasma from Patients with Inflammatory Bowel Disease. Journal of Gastroenterology and Hepatology, 35, 1355-1364. https://doi.org/10.1111/jgh.15067
|
[28]
|
Snider, A.J., Kawamori, T., Bradshaw, S.G., Orr, K.A., Gilkeson, G.S., Hannun, Y.A., et al. (2008) A Role for Sphingosine Kinase 1 in Dextran Sulfate Sodium‐Induced Colitis. The FASEB Journal, 23, 143-152. https://doi.org/10.1096/fj.08-118109
|
[29]
|
Pulkoski-Gross, M.J., Uys, J.D., Orr-Gandy, K.A., Coant, N., Bialkowska, A.B., Szulc, Z.M., et al. (2017) Novel Sphingosine Kinase-1 Inhibitor, LCL351, Reduces Immune Responses in Murine DSS-Induced Colitis. Prostaglandins & Other Lipid Mediators, 130, 47-56. https://doi.org/10.1016/j.prostaglandins.2017.03.006
|
[30]
|
Montrose, D.C., Scherl, E.J., Bosworth, B.P., Zhou, X.K., Jung, B., Dannenberg, A.J., et al. (2013) S1P1 Localizes to the Colonic Vasculature in Ulcerative Colitis and Maintains Blood Vessel Integrity. Journal of Lipid Research, 54, 843-851. https://doi.org/10.1194/jlr.m034108
|
[31]
|
Paik, J. (2022) Ozanimod: A Review in Ulcerative Colitis. Drugs, 82, 1303-1313. https://doi.org/10.1007/s40265-022-01762-8
|
[32]
|
Shirley, M. (2024) Etrasimod: First Approval. Drugs, 84, 247-254. https://doi.org/10.1007/s40265-024-01997-7
|
[33]
|
Bonati, L., Motta, S. and Callea, L. (2024) The AhR Signaling Mechanism: A Structural Point of View. Journal of Molecular Biology, 436, Article 168296. https://doi.org/10.1016/j.jmb.2023.168296
|
[34]
|
Xu, L., Lin, L., Xie, N., Chen, W., Nong, W. and Li, R. (2024) Role of Aryl Hydrocarbon Receptors in Infection and Inflammation. Frontiers in Immunology, 15, Article 1367734. https://doi.org/10.3389/fimmu.2024.1367734
|
[35]
|
Sládeková, L., Mani, S. and Dvořák, Z. (2023) Ligands and Agonists of the Aryl Hydrocarbon Receptor AhR: Facts and Myths. Biochemical Pharmacology, 213, Article 115626. https://doi.org/10.1016/j.bcp.2023.115626
|
[36]
|
Pernomian, L., Duarte-Silva, M. and de Barros Cardoso, C.R. (2020) The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical Reviews in Allergy & Immunology, 59, 382-390. https://doi.org/10.1007/s12016-020-08789-3
|
[37]
|
Marafini, I., Monteleone, I., Laudisi, F. and Monteleone, G. (2024) Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. International Journal of Molecular Sciences, 25, Article 4527. https://doi.org/10.3390/ijms25084527
|
[38]
|
Hontecillas, R., Horne, W.T., Climent, M., Guri, A.J., Evans, C., Zhang, Y., et al. (2011) Immunoregulatory Mechanisms of Macrophage PPAR-γ in Mice with Experimental Inflammatory Bowel Disease. Mucosal Immunology, 4, 304-313. https://doi.org/10.1038/mi.2010.75
|
[39]
|
Dubuquoy, L., Rousseaux, C., Thuru, X., Peyrin-Biroulet, L., Romano, O., Chavatte, P., et al. (2006) PPARγ as a New Therapeutic Target in Inflammatory Bowel Diseases. Gut, 55, 1341-1349. https://doi.org/10.1136/gut.2006.093484
|
[40]
|
Picardo, S. and Panaccione, R. (2019) Anti-MADCAM Therapy for Ulcerative Colitis. Expert Opinion on Biological Therapy, 20, 437-442. https://doi.org/10.1080/14712598.2020.1691520
|
[41]
|
Reinisch, W., Hung, K., Hassan-Zahraee, M. and Cataldi, F. (2018) Targeting Endothelial Ligands: ICAM-1/Alicaforsen, MAdCAM-1. Journal of Crohn’s and Colitis, 12, S669-S677. https://doi.org/10.1093/ecco-jcc/jjy059
|
[42]
|
Greuter, T., Vavricka, S.R., Biedermann, L., Pilz, J., Borovicka, J., Seibold, F., et al. (2017) Alicaforsen, an Antisense Inhibitor of Intercellular Adhesion Molecule-1, in the Treatment for Left-Sided Ulcerative Colitis and Ulcerative Proctitis. Digestive Diseases, 36, 123-129. https://doi.org/10.1159/000484979
|
[43]
|
Garcia-Carbonell, R., Yao, S., Das, S. and Guma, M. (2019) Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Frontiers in Immunology, 10, Article 1094. https://doi.org/10.3389/fimmu.2019.01094
|
[44]
|
Xu, L., Zhang, Y., Xue, X., Liu, J., Li, Z., Yang, G., et al. (2020) A Phase I Trial of Berberine in Chinese with Ulcerative Colitis. Cancer Prevention Research, 13, 117-126. https://doi.org/10.1158/1940-6207.capr-19-0258
|
[45]
|
Xiong, K., Deng, J., Yue, T., Hu, W., Zeng, X., Yang, T., et al. (2023) Berberine Promotes M2 Macrophage Polarisation through the IL-4-STAT6 Signalling Pathway in Ulcerative Colitis Treatment. Heliyon, 9, e14176. https://doi.org/10.1016/j.heliyon.2023.e14176
|
[46]
|
Zhang, J., Lin, B., Zhang, Y., Hu, X., Liu, T., Liu, E., et al. (2024) Baitouweng Decoction Alleviates Ulcerative Colitis by Regulating Tryptophan Metabolism through DOPA Decarboxylase Promotion. Frontiers in Pharmacology, 15, Article 1423307. https://doi.org/10.3389/fphar.2024.1423307
|
[47]
|
蒋晓娟, 王亚东, 孙娟, 等. 白头翁汤正丁醇提取物通过激活BMP信号通路治疗溃疡性结肠炎的作用机制研究[J]. 中国中药杂志, 2024, 49(7): 1762-1773.
|
[48]
|
Ding, P., Liu, J., Li, Q., Lu, Q., Li, J., Shi, R., et al. (2021) Investigation of the Active Ingredients and Mechanism of Hudi Enteric-Coated Capsules in DSS-Induced Ulcerative Colitis Mice Based on Network Pharmacology and Experimental Verification. Drug Design, Development and Therapy, 15, 4259-4273. https://doi.org/10.2147/dddt.s326029
|