[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Chibaudel, B., Tournigand, C., Bonnetain, F., Richa, H., Benetkiewicz, M., André, T., et al. (2015) Therapeutic Strategy in Unresectable Metastatic Colorectal Cancer: An Updated Review. Therapeutic Advances in Medical Oncology, 7, 153-169. https://doi.org/10.1177/1758834015572343
|
[3]
|
Geng, F., Wang, Z., Yin, H., Yu, J. and Cao, B. (2017) Molecular Targeted Drugs and Treatment of Colorectal Cancer: Recent Progress and Future Perspectives. Cancer Biotherapy and Radiopharmaceuticals, 32, 149-160. https://doi.org/10.1089/cbr.2017.2210
|
[4]
|
Hu, L., Liang, Y., Wu, K., Wang, C., Zhang, T., Peng, R., et al. (2021) Repressing PDCD4 Activates JNK/ABCG2 Pathway to Induce Chemoresistance to Fluorouracil in Colorectal Cancer Cells. Annals of Translational Medicine, 9, Article No. 114. https://doi.org/10.21037/atm-20-4292
|
[5]
|
Shao, B., Zhu, M., Shen, K., Luo, L., Du, P., Li, J., et al. (2023) Disease Burden of Total and Early-Onset Colorectal Cancer in China from 1990 to 2019 and Predictions of Cancer Incidence and Mortality. Clinical Epidemiology, 15, 151-163. https://doi.org/10.2147/clep.s391058
|
[6]
|
Kekelidze, M. (2013) Colorectal Cancer: Current Imaging Methods and Future Perspectives for the Diagnosis, Staging and Therapeutic Response Evaluation. World Journal of Gastroenterology, 19, 8502-8514. https://doi.org/10.3748/wjg.v19.i46.8502
|
[7]
|
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010
|
[8]
|
Fan, S., Cui, X., Liu, C., Li, X., Zheng, L., Song, Q., et al. (2021) CT-Based Radiomics Signature: A Potential Biomarker for Predicting Postoperative Recurrence Risk in Stage II Colorectal Cancer. Frontiers in Oncology, 11, Article ID: 644933. https://doi.org/10.3389/fonc.2021.644933
|
[9]
|
Li, Y., Eresen, A., Shangguan, J., Yang, J., Benson, A.B., Yaghmai, V., et al. (2020) Preoperative Prediction of Perineural Invasion and KRAS Mutation in Colon Cancer Using Machine Learning. Journal of Cancer Research and Clinical Oncology, 146, 3165-3174. https://doi.org/10.1007/s00432-020-03354-z
|
[10]
|
Xue, T., Peng, H., Chen, Q., Li, M., Duan, S. and Feng, F. (2022) Preoperative Prediction of KRAS Mutation Status in Colorectal Cancer Using a Ct-Based Radiomics Nomogram. The British Journal of Radiology, 95, Article ID: 20211014. https://doi.org/10.1259/bjr.20211014
|
[11]
|
Jia, T., Xiong, J., Li, X., Yu, W., Xu, Z., Cai, X., et al. (2019) Identifying EGFR Mutations in Lung Adenocarcinoma by Noninvasive Imaging Using Radiomics Features and Random Forest Modeling. European Radiology, 29, 4742-4750. https://doi.org/10.1007/s00330-019-06024-y
|
[12]
|
Mendoza, D.P., Stowell, J., Muzikansky, A., Shepard, J.O., Shaw, A.T. and Digumarthy, S.R. (2019) Computed Tomography Imaging Characteristics of Non-Small-Cell Lung Cancer with Anaplastic Lymphoma Kinase Rearrangements: A Systematic Review and Meta-analysis. Clinical Lung Cancer, 20, 339-349. https://doi.org/10.1016/j.cllc.2019.05.006
|
[13]
|
Yamamoto, S., Maki, D.D., Korn, R.L. and Kuo, M.D. (2012) Radiogenomic Analysis of Breast Cancer Using MRI: A Preliminary Study to Define the Landscape. American Journal of Roentgenology, 199, 654-663. https://doi.org/10.2214/ajr.11.7824
|
[14]
|
Zhu, Y., Li, H., Guo, W., Drukker, K., Lan, L., Giger, M.L., et al. (2015) Deciphering Genomic Underpinnings of Quantitative MRI-Based Radiomic Phenotypes of Invasive Breast Carcinoma. Scientific Reports, 5, Article No. 17787. https://doi.org/10.1038/srep17787
|
[15]
|
Nishimura, T., Kakiuchi, N., Yoshida, K., Sakurai, T., Kataoka, T.R., Kondoh, E., et al. (2023) Evolutionary Histories of Breast Cancer and Related Clones. Nature, 620, 607-614. https://doi.org/10.1038/s41586-023-06333-9
|
[16]
|
Barzi, A., Yang, D., Mostofizadeh, S. and Lenz, H. (2017) Trends in Colorectal Cancer Mortality in Hispanics: A SEER Analysis. Oncotarget, 8, 108771-108777. https://doi.org/10.18632/oncotarget.21938
|
[17]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Carvalho, S., et al. (2014) Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4006. https://doi.org/10.1038/ncomms5006
|
[18]
|
Lv, L., Xin, B., Hao, Y., Yang, Z., Xu, J., Wang, L., et al. (2022) Radiomic Analysis for Predicting Prognosis of Colorectal Cancer from Preoperative 18F-FDG PET/CT. Journal of Translational Medicine, 20, Article No. 66. https://doi.org/10.1186/s12967-022-03262-5
|
[19]
|
Liu, Z., Zhang, X., Shi, Y., Wang, L., Zhu, H., Tang, Z., et al. (2017) Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clinical Cancer Research, 23, 7253-7262. https://doi.org/10.1158/1078-0432.ccr-17-1038
|
[20]
|
Lovinfosse, P., Polus, M., Van Daele, D., Martinive, P., Daenen, F., Hatt, M., et al. (2017) FDG PET/CT Radiomics for Predicting the Outcome of Locally Advanced Rectal Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 45, 365-375. https://doi.org/10.1007/s00259-017-3855-5
|
[21]
|
González-Castro, V., Cernadas, E., Huelga, E., Fernández-Delgado, M., Porto, J., Antunez, J.R., et al. (2020) CT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning. Applied Sciences, 10, Article No. 6214. https://doi.org/10.3390/app10186214
|
[22]
|
Li, M., Zhang, J., Dan, Y., Yao, Y., Dai, W., Cai, G., et al. (2020) A Clinical-Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. Journal of Translational Medicine, 18, Article No. 46. https://doi.org/10.1186/s12967-020-02215-0
|
[23]
|
Wang, R., Dai, W., Gong, J., Huang, M., Hu, T., Li, H., et al. (2022) Development of a Novel Combined Nomogram Model Integrating Deep Learning-Pathomics, Radiomics and Immunoscore to Predict Postoperative Outcome of Colorectal Cancer Lung Metastasis Patients. Journal of Hematology & Oncology, 15, Article No. 11. https://doi.org/10.1186/s13045-022-01225-3
|
[24]
|
Zhang, Y., Morris, J.S., Aerry, S.N., Rao, A.U.K. and Baladandayuthapani, V. (2019) Radio-Ibag: Radiomics-Based Integrative Bayesian Analysis of Multiplatform Genomic Data. The Annals of Applied Statistics, 13, 1957-1988. https://doi.org/10.1214/19-aoas1238
|
[25]
|
Tan, J., Yuan, S.X., Ming, W.L. and Sun, X. (2018) Research Progress of Imaging Genomics Analysis Methods. Advances in Biotechnology, 8, 277-283+369.
|
[26]
|
Chaddad, A., Daniel, P., Sabri, S., Desrosiers, C. and Abdulkarim, B. (2019) Integration of Radiomic and Multi-Omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers, 11, Article No. 1148. https://doi.org/10.3390/cancers11081148
|
[27]
|
Badic, B., Hatt, M., Durand, S., Jossic-Corcos, C.L., Simon, B., Visvikis, D., et al. (2019) Radiogenomics-Based Cancer Prognosis in Colorectal Cancer. Scientific Reports, 9, Article No. 9743. https://doi.org/10.1038/s41598-019-46286-6
|
[28]
|
Chen, L., Lu, D., Sun, K., Xu, Y., Hu, P., Li, X., et al. (2019) Identification of Biomarkers Associated with Diagnosis and Prognosis of Colorectal Cancer Patients Based on Integrated Bioinformatics Analysis. Gene, 692, 119-125. https://doi.org/10.1016/j.gene.2019.01.001
|
[29]
|
Thutkawkorapin, J., Picelli, S., Kontham, V., Liu, T., Nilsson, D. and Lindblom, A. (2016) Exome Sequencing in One Family with Gastric and Rectal Cancer. BMC Genetics, 17, Article No. 41. https://doi.org/10.1186/s12863-016-0351-z
|
[30]
|
Liu, J., Li, H., Sun, L., Shen, S., Zhou, Q., Yuan, Y., et al. (2019) Epigenetic Alternations of MicroRNAs and DNA Methylation Contribute to Liver Metastasis of Colorectal Cancer. Digestive Diseases and Sciences, 64, 1523-1534. https://doi.org/10.1007/s10620-018-5424-6
|
[31]
|
Chen, Y.K., Gao, L.H., Fu, Y. and Huang, X.L. (2020) Effect of miR-200c Inhibiting Autophagy on Chemosensitivity of HepG2/ADM Cells. Journal of Integrative Liver Disease, 30, 524-526.
|