脂质代谢在脑胶质瘤中的研究进展
Research Progress of Lipid Metabolism in Brain Glioma
DOI: 10.12677/acm.2024.14112858, PDF, HTML, XML,   
作者: 王 强, 王 飞*:内蒙古医科大学附属医院神经外科,内蒙古 呼和浩特
关键词: 胶质瘤脂质代谢胆固醇脂肪酸Glioma Lipid Metabolism Cholesterol Aliphatic Acid
摘要: 胶质瘤(Glioma)是指起源于神经胶质细胞的肿瘤,是中枢神经系统最常见的原发性恶性肿瘤,具有复发率高、预后差等特点,目前治疗方案主要以手术辅以放、化疗为主。代谢重编程是肿瘤的标志,作为三种主要物质代谢之一,脂质具有明显的影响。脂质代谢通过调节各种致癌信号途径参与肿瘤的发生、发育、侵袭和转移。为了进一步了解脂质代谢在胶质瘤细胞中所起到的作用,本文就脂质代谢与脑胶质瘤之间的关系及其相关机制作一综述,探讨脂质代谢在其发生发展中的作用和意义。
Abstract: Glioma, a tumor originating from glial cells, is the most common primary malignant tumor in the central nervous system, characterized by high recurrence rate and poor prognosis. Currently, surgery, radiotherapy and chemotherapy are the main treatment options. Metabolic reprogramming is a hallmark of tumors, and as one of the three major substances metabolized, lipids have a clear effect. Lipid metabolism is involved in the occurrence, development, invasion and metastasis of tumors by regulating various carcinogenic signaling pathways. In order to further understand the role of lipid metabolism in glioma cells, this article reviewed the relationship between lipid metabolism and brain glioma and its related mechanisms, and discussed the role and significance of lipid metabolism in its occurrence and development.
文章引用:王强, 王飞. 脂质代谢在脑胶质瘤中的研究进展[J]. 临床医学进展, 2024, 14(11): 147-151. https://doi.org/10.12677/acm.2024.14112858

1. 胶质瘤的概述

胶质瘤是中枢神经系统最常见的致死性原发性肿瘤,根据WHO分级通常可分为I-II (低级别)和III-IV级(高级别) [1],由于胶质瘤通常呈侵袭性生长,与周围正常脑组织分界不清,手术常无法全切肿瘤,所以术后的放、化疗对改善预后就显得尤为重要[2]。替莫唑胺作为一种新型的口服烷化剂,是胶质瘤治疗的一线化疗药物,但由于其耐药性的迅速产生,使胶质瘤患者,尤其是胶质瘤复发患者的获益程度大大降低[3] [4]。因此,为了显著提高胶质瘤患者的总体生存率,必须全面了解恶性胶质瘤的生物学,并确定参与调节肿瘤生长的关键分子,以开发更有效的药物来治疗患者。越来越多的证据表明[5],新陈代谢重新编程可能在恶性肿瘤生长中发挥重要作用。因此,针对改变的细胞代谢已成为治疗肿瘤的最有效策略,用以准确诊断、估计预后。

2. 脂质代谢的概述及其与肿瘤细胞之间的相关性

脂类被定义为一组不溶于水的多种分子,包括三酰甘油酯、磷酸甘油酯、固醇和疏脂[6]。其中,三酰甘油酯是极低密度脂蛋白和乳糜微粒的主要组成部分,在新陈代谢过程中它作为能源和食物中的脂肪的运输工具起了一个重要的作用。由于脑无法使用脂肪酸作为能源,三酰甘油中的丙三醇会被转化为葡萄糖供脑作为能源使用。而磷酸甘油酯、固醇、疏脂构成细胞生物膜。此外,脂质也可以作为信号传输中的第二信使和激素发挥重要作用[7]。脂质代谢通过改变其生物膜的稳定性,进而参与肿瘤细胞的侵袭。许多肿瘤细胞表现出很高的脂质合成率。1953年,一些学者提出,肿瘤组织可以以类似于胚胎组织的方式合成脂质[8]。肿瘤细胞已被证明可以重新编程其代谢网络,以满足其快速生长和分裂的需求,即使在外源性脂质来源不足或肿瘤微环境中的血清衍生脂质缺乏的情况下[9]。在正常氧条件下(瓦尔堡效应)下增强糖酵解和谷氨酰胺代谢增加是恶性肿瘤的主要特征[10]。此外,加剧的脂肪生成也是癌症的主要特征之一[11],已被证明与增强的葡萄糖和谷氨酰胺代谢直接相关。与低级胶质瘤相比,在高等级胶质瘤中检测到0.9和1.3 ppm的高脂质信号[12]。这一证据表明,胶质瘤的脂质代谢严重失调。本综述总结了我们对脑胶质瘤细胞中脂质代谢调节的理解的最新进展,并强调了潜在的分子靶点及其用于癌症治疗的抑制剂。

3. 胆固醇脂在胶质瘤中的作用

胆固醇是生物膜的重要组成部分,由甲羟戊酸途径中的类异戊二烯前体产生,羟甲基戊二酸单酰辅酶A还原酶是其中的关键酶[13]。在脂肪的吸收、转运、分泌和调节胆固醇代谢方面起着重要的作用。许多研究小组都使用核磁共振对健康和肿瘤性人脑组织的总脂质分数进行了表征[14]。通过使用1H-和13C-NMR,由胆固醇与长链脂肪酸酯化形成的胆固醇酯已被证明只存在于高级胶质瘤中[15]。除了胶质瘤,胆固醇酯也已被证明存在于恶性肾细胞癌中[16]和人类膀胱上皮癌[17],但在相应的健康组织中不存在。总的来说,胆固醇酯的存在似乎是诊断恶性肿瘤的有前途的生物标志物[18]。然而,为什么肿瘤组织形成和积累胆固醇酯,以及肿瘤细胞如何利用这部分脂质还不得而知。鉴于游离胆固醇水平受到负反馈机制的严格调节,胆固醇酯的形成可能是胶质瘤细胞用来储存胆固醇的策略。当细胞需要胆固醇时,胆固醇酯可以迅速释放胆固醇以促进细胞生长或生存[19] [20]。由于健康的脑组织中没有胆固醇酯,防止胆固醇酯的利用可能是抑制恶性胶质瘤生长的可能治疗策略。

4. 磷脂酰胆碱在胶质瘤中的高表达

磷脂酰胆碱作为磷脂双分子膜的主要成分,其在肿瘤细胞的生长和增殖需要大量产生[21]。在哺乳动物细胞中,CHKα在维持磷脂酰胆碱生物合成方面发挥核心作用,并已广泛参与人类肿瘤发生[22]。在40%至60%的人类肿瘤中检测到促进肿瘤细胞增殖和生存的CHKα过度表达,并与早期非小细胞肺癌、肝细胞癌和前列腺癌患者的预后不良相关[23] [24]。与正常脑组织相比,磷脂酰胆碱在髓母细胞瘤和GBMs中的含量明显更高。II/III级胶质瘤患者的磷脂酰胆碱水平也高于正常受试者[25]。含胆碱磷脂水平的增加可能反映了细胞膜结构和细胞周转率的变化。这种变化可能是对生长刺激的反应,也可能与恶性细胞转化相对应[26]。有研究表明,胆碱磷脂的代谢异常在肿瘤的发生、发展、转移以及免疫逃逸中都可能发挥作用,需要进一步研究磷脂代谢及其对胶质瘤治疗和预后的影响,同时,通过使用飞行时间二次离子质谱(TOF-SIMS)分析技术,Mai H Philipsen等人显示,与正常人相比,各种原发性脑肿瘤患者的血清中磷脂和总胆固醇含量更高,这些脂质的浓度随着肿瘤等级的增加而增加[27]。此外,Srivastava确定了不同肿瘤类型患者脑脊液中的脂质成分,并表明胆固醇、胆固醇酯和磷脂在脑肿瘤患者中浓度很高,但在正常人和其他神经系统疾病(如脑膜炎、运动神经元疾病)患者中不存在。而Laura Mercurio等人实验证明,磷脂酰胆碱特异性磷脂酶C通过抑制下调CXCR4的表达,并干扰胶质瘤细胞的增殖、入侵和糖酵解[28]。脑脊液中胆固醇酯和磷脂的存在可能是由肿瘤组织坏死和肿瘤内血管泄漏引起的。因此,胆固醇酯和磷脂可能是诊断大脑恶性肿瘤的潜在生物标志物,也可以是治疗的预后标志物。

5. 脂肪酸合成酶与脑胶质瘤的关系

脂肪酸合成酶是一种大型多酶复合物,是脂肪酸合成关键酶,催化乙酰辅酶A和丙二酰辅酶A而生成长链脂肪酸[29]。其单体包括β-酮酰基合成酶(KS)、乙酰/丙二酰转酰基酶、β-羟酰基脱水酶、烯酰还原酶、β-酮酰基还原酶、酰基载体蛋白和硫酯酶。普遍表达于各种组织细胞中,在哺乳动物肝、肾、脑、肺和乳腺以及脂肪组织中表达丰富[30]。研究发现,其与恶性肿瘤的发生发展有着密切关系。例如,在乳腺癌、结肠癌、卵巢癌、肺癌和黑色素瘤等多种肿瘤中,脂肪酸合成酶的表达水平与肿瘤的恶性程度和预后不良相关。研究表明,其抑制剂能够显著降低肿瘤中脂肪酸合成酶的表达,并下调与脂肪生成、细胞周期、DNA复制和有丝分裂相关的关键基因,同时上调细胞凋亡和铁死亡相关途径中的基因,从而抑制肿瘤生长。脂肪酰辅酶A合成酶VL3 (ACSVL3)在恶性脑肿瘤组织中升高,并参与肿瘤发生[31]。这项研究调查了ACSVL3在维持多形胶质母细胞瘤(GBM)干细胞自我更新中的作用,以及GBM干细胞启动肿瘤异种移植形成的能力。我们的发现表明,脂质代谢酶ACSVL3参与GBM干细胞的维持和动物GBM干细胞富集神经圈的肿瘤启动能力。

6. 结论与展望

以上研究证实:脂质代谢与胶质瘤细胞发生发展密切相关,而脂质代谢通路成为了目前脂质代谢领域的研究热点,因此深入探讨胶质瘤细胞的脂质代谢相关通路的分子机制对治疗胶质瘤有着非常重要的意义。胆固醇脂、磷脂酰胆碱、脂肪酸合成酶等脂质,都是通过调节肿瘤细胞的脂质代谢来达到肿瘤的增殖目的。但值得注意的是胶质瘤脂质代谢相关机制十分复杂,各种信号通路及其相关信号因子错综复杂,但对于脂质代谢因子是否可以作为“总开关”调控通路的相关研究甚少,对于这一机制的研究将有助于应用最少的药物达到最佳治疗效果的目的,从而减轻临床患者的药物负荷及经济负担。因此,进一步深入研究脂质代谢与肿瘤发生发展之间的关系对胶质瘤患者的治疗有着极其重要的意义。

综上所述,探索脂质代谢在胶质母细胞瘤的综合治疗中起着不可替代的作用,为胶质瘤患者争取了更长的无进展生存期,然而目前脂质代谢存在多种多样的因子,如何准确地发现其中的关键因子成为了胶质瘤细胞治疗历程上的一大难题,且TMZ耐药使胶质瘤患者的生存获益大大减少,因此精准定位脂质代谢,针对性用药对治疗胶质母细胞瘤显得尤为重要。脂质代谢受到多种因素的影响,然而目前对于其研究结果仍不尽如人意,仍需要大量的研究来解决这些问题。自噬与肿瘤之间存在双重的关系,而自噬在TMZ耐药中起着重要作用,本文总结分析了以上几种与胶质母细胞瘤密切相关的几种脂质,这些脂类物质均可以通过其代谢影响胶质瘤的增殖,从而改变胶质瘤患者预后。对于这些脂类的进一步研究将有助于我们通过调节胶质瘤的脂质代谢,为胶质瘤“精准治疗”提供新的靶向联合用药的思路与方案。

NOTES

*通讯作者。

参考文献

[1] Xun, Y., Yang, H., Kaminska, B. and You, H. (2021) Toll-Like Receptors and Toll-Like Receptor-Targeted Immunotherapy against Glioma. Journal of Hematology & Oncology, 14, Article No. 176.
https://doi.org/10.1186/s13045-021-01191-2
[2] Lang, F., Liu, Y., Chou, F. and Yang, C. (2021) Genotoxic Therapy and Resistance Mechanism in Gliomas. Pharmacology & Therapeutics, 228, Article ID: 107922.
https://doi.org/10.1016/j.pharmthera.2021.107922
[3] Oldrini, B., Vaquero-Siguero, N., Mu, Q., Kroon, P., Zhang, Y., Galán-Ganga, M., et al. (2020) MGMT Genomic Rearrangements Contribute to Chemotherapy Resistance in Gliomas. Nature Communications, 11, Article No. 3883.
https://doi.org/10.1038/s41467-020-17717-0
[4] Hombach-Klonisch, S., Mehrpour, M., Shojaei, S., Harlos, C., Pitz, M., Hamai, A., et al. (2018) Glioblastoma and Chemoresistance to Alkylating Agents: Involvement of Apoptosis, Autophagy, and Unfolded Protein Response. Pharmacology & Therapeutics, 184, 13-41.
https://doi.org/10.1016/j.pharmthera.2017.10.017
[5] Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606.
https://doi.org/10.1084/jem.20201606
[6] Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699.
https://doi.org/10.1016/j.cmet.2022.09.023
[7] Yang, K., Wang, X., Song, C., He, Z., Wang, R., Xu, Y., et al. (2023) The Role of Lipid Metabolic Reprogramming in Tumor Microenvironment. Theranostics, 13, 1774-1808.
https://doi.org/10.7150/thno.82920
[8] Jin, H., Wang, J., Wang, Z., Xi, M., Xia, B., Deng, K., et al. (2023) Lipid Metabolic Reprogramming in Tumor Microenvironment: From Mechanisms to Therapeutics. Journal of Hematology & Oncology, 16, Article No. 103.
https://doi.org/10.1186/s13045-023-01498-2
[9] Butler, L.M., Perone, Y., Dehairs, J., Lupien, L.E., de Laat, V., Talebi, A., et al. (2020) Lipids and Cancer: Emerging Roles in Pathogenesis, Diagnosis and Therapeutic Intervention. Advanced Drug Delivery Reviews, 159, 245-293.
https://doi.org/10.1016/j.addr.2020.07.013
[10] Kim, D., Song, N. and Yim, H. (2023) Targeting Dysregulated Lipid Metabolism in the Tumor Microenvironment. Archives of Pharmacal Research, 46, 855-881.
https://doi.org/10.1007/s12272-023-01473-y
[11] Corbet, C. and Feron, O. (2017) Emerging Roles of Lipid Metabolism in Cancer Progression. Current Opinion in Clinical Nutrition & Metabolic Care, 20, 254-260.
https://doi.org/10.1097/mco.0000000000000381
[12] Terry, A.R. and Hay, N. (2024) Emerging Targets in Lipid Metabolism for Cancer Therapy. Trends in Pharmacological Sciences, 45, 537-551.
https://doi.org/10.1016/j.tips.2024.04.007
[13] Huang, B., Song, B. and Xu, C. (2020) Cholesterol Metabolism in Cancer: Mechanisms and Therapeutic Opportunities. Nature Metabolism, 2, 132-141.
https://doi.org/10.1038/s42255-020-0174-0
[14] Betsholtz, C. (2015) Lipid Transport and Human Brain Development. Nature Genetics, 47, 699-701.
https://doi.org/10.1038/ng.3348
[15] Zhang, J., Liu, B., Xu, C., Ji, C., Yin, A., Liu, Y., et al. (2023) Cholesterol Homeostasis Confers Glioma Malignancy Triggered by hnRNPA2b1-Dependent Regulation of SREBP2 and LDLR. Neuro-Oncology, 26, 684-700.
https://doi.org/10.1093/neuonc/noad233
[16] Ng, M.Y.W., Charsou, C., Lapao, A., Singh, S., Trachsel-Moncho, L., Schultz, S.W., et al. (2022) The Cholesterol Transport Protein GRAMD1C Regulates Autophagy Initiation and Mitochondrial Bioenergetics. Nature Communications, 13, Article No. 6283.
https://doi.org/10.1038/s41467-022-33933-2
[17] Takahashi, K., Kimura, G., Endo, Y., Akatsuka, J., Hayashi, T., Toyama, Y., et al. (2019) Urothelial Carcinoma of the Bladder, Lipid Cell Variant: Case Report and Literature Review. Journal of Nippon Medical School, 86, 349-351.
https://doi.org/10.1272/jnms.jnms.2019_86-602
[18] Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Li, J., et al. (2023) Functional Significance of Cholesterol Metabolism in Cancer: From Threat to Treatment. Experimental & Molecular Medicine, 55, 1982-1995.
https://doi.org/10.1038/s12276-023-01079-w
[19] Saad, E.E., Michel, R. and Borahay, M.A. (2024) Cholesterol and Immune Microenvironment: Path towards Tumorigenesis. Current Nutrition Reports, 13, 557-565.
https://doi.org/10.1007/s13668-024-00542-y
[20] Lu, J., Chen, S., Bai, X., Liao, M., Qiu, Y., Zheng, L., et al. (2023) Targeting Cholesterol Metabolism in Cancer: From Molecular Mechanisms to Therapeutic Implications. Biochemical Pharmacology, 218, Article ID: 115907.
https://doi.org/10.1016/j.bcp.2023.115907
[21] Ma, Q., Jiang, H., Ma, L., Zhao, G., Xu, Q., Guo, D., et al. (2023) The Moonlighting Function of Glycolytic Enzyme Enolase-1 Promotes Choline Phospholipid Metabolism and Tumor Cell Proliferation. Proceedings of the National Academy of Sciences of the United States of America, 120, e2209435120.
https://doi.org/10.1073/pnas.2209435120
[22] Koch, K., Hartmann, R., Schröter, F., Suwala, A.K., Maciaczyk, D., Krüger, A.C., et al. (2016) Reciprocal Regulation of the Cholinic Phenotype and Epithelial-Mesenchymal Transition in Glioblastoma Cells. Oncotarget, 7, 73414-73431.
https://doi.org/10.18632/oncotarget.12337
[23] Zhu, R., Yang, Y., Shao, F., Wang, J., Gao, Y., He, J., et al. (2022) Choline Kinase α2 Promotes Lipid Droplet Lipolysis in Non-Small-Cell Lung Carcinoma. Frontiers in Oncology, 12, Article 848483.
https://doi.org/10.3389/fonc.2022.848483
[24] Li, Z., Tan, Y., Li, X., Quan, J., Bode, A.M., Cao, Y., et al. (2022) DHRS2 Inhibits Cell Growth and Metastasis in Ovarian Cancer by Downregulation of CHKα to Disrupt Choline Metabolism. Cell Death & Disease, 13, Article No. 845.
https://doi.org/10.1038/s41419-022-05291-w
[25] Miao, Y., Wang, J., Hao, S., Deng, Y., Zhang, Z., Jin, Z., et al. (2023) The Inhibition of Aurora a Kinase Regulates Phospholipid Remodeling by Upregulating LPCAT1 in Glioblastoma. Neoplasma, 70, 260-271.
https://doi.org/10.4149/neo_2023_221126n1140
[26] Saito, R.D.F., Andrade, L.N.D.S., Bustos, S.O. and Chammas, R. (2022) Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk between Cancer Cells and Immune Cells. Frontiers in Immunology, 13, Article 768606.
https://doi.org/10.3389/fimmu.2022.768606
[27] Philipsen, M.H., Hansson, E., Manaprasertsak, A., Lange, S., Jennische, E., Carén, H., et al. (2023) Distinct Cholesterol Localization in Glioblastoma Multiforme Revealed by Mass Spectrometry Imaging. ACS Chemical Neuroscience, 14, 1602-1609.
https://doi.org/10.1021/acschemneuro.2c00776
[28] Mercurio, L., Cecchetti, S., Ricci, A., Pacella, A., Cigliana, G., Bozzuto, G., et al. (2017) Phosphatidylcholine-Specific Phospholipase C Inhibition Down-Regulates CXCR4 Expression and Interferes with Proliferation, Invasion and Glycolysis in Glioma Cells. PLOS ONE, 12, e0176108.
https://doi.org/10.1371/journal.pone.0176108
[29] Kuwata, H. and Hara, S. (2019) Role of Acyl-Coa Synthetase ACSL4 in Arachidonic Acid Metabolism. Prostaglandins & Other Lipid Mediators, 144, Article ID: 106363.
https://doi.org/10.1016/j.prostaglandins.2019.106363
[30] Watkins, P.A. and Ellis, J.M. (2012) Peroxisomal Acyl-Coa Synthetases. Biochimica et Biophysica Acta (BBA)Molecular Basis of Disease, 1822, 1411-1420.
https://doi.org/10.1016/j.bbadis.2012.02.010
[31] Sun, P., Xia, S., Lal, B., Shi, X., Yang, K.S., Watkins, P.A., et al. (2014) Lipid Metabolism Enzyme ACSVL3 Supports Glioblastoma Stem Cell Maintenance and Tumorigenicity. BMC Cancer, 14, Article No. 401.
https://doi.org/10.1186/1471-2407-14-401