[1]
|
Xun, Y., Yang, H., Kaminska, B. and You, H. (2021) Toll-Like Receptors and Toll-Like Receptor-Targeted Immunotherapy against Glioma. Journal of Hematology & Oncology, 14, Article No. 176. https://doi.org/10.1186/s13045-021-01191-2
|
[2]
|
Lang, F., Liu, Y., Chou, F. and Yang, C. (2021) Genotoxic Therapy and Resistance Mechanism in Gliomas. Pharmacology & Therapeutics, 228, Article ID: 107922. https://doi.org/10.1016/j.pharmthera.2021.107922
|
[3]
|
Oldrini, B., Vaquero-Siguero, N., Mu, Q., Kroon, P., Zhang, Y., Galán-Ganga, M., et al. (2020) MGMT Genomic Rearrangements Contribute to Chemotherapy Resistance in Gliomas. Nature Communications, 11, Article No. 3883. https://doi.org/10.1038/s41467-020-17717-0
|
[4]
|
Hombach-Klonisch, S., Mehrpour, M., Shojaei, S., Harlos, C., Pitz, M., Hamai, A., et al. (2018) Glioblastoma and Chemoresistance to Alkylating Agents: Involvement of Apoptosis, Autophagy, and Unfolded Protein Response. Pharmacology & Therapeutics, 184, 13-41. https://doi.org/10.1016/j.pharmthera.2017.10.017
|
[5]
|
Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606. https://doi.org/10.1084/jem.20201606
|
[6]
|
Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699. https://doi.org/10.1016/j.cmet.2022.09.023
|
[7]
|
Yang, K., Wang, X., Song, C., He, Z., Wang, R., Xu, Y., et al. (2023) The Role of Lipid Metabolic Reprogramming in Tumor Microenvironment. Theranostics, 13, 1774-1808. https://doi.org/10.7150/thno.82920
|
[8]
|
Jin, H., Wang, J., Wang, Z., Xi, M., Xia, B., Deng, K., et al. (2023) Lipid Metabolic Reprogramming in Tumor Microenvironment: From Mechanisms to Therapeutics. Journal of Hematology & Oncology, 16, Article No. 103. https://doi.org/10.1186/s13045-023-01498-2
|
[9]
|
Butler, L.M., Perone, Y., Dehairs, J., Lupien, L.E., de Laat, V., Talebi, A., et al. (2020) Lipids and Cancer: Emerging Roles in Pathogenesis, Diagnosis and Therapeutic Intervention. Advanced Drug Delivery Reviews, 159, 245-293. https://doi.org/10.1016/j.addr.2020.07.013
|
[10]
|
Kim, D., Song, N. and Yim, H. (2023) Targeting Dysregulated Lipid Metabolism in the Tumor Microenvironment. Archives of Pharmacal Research, 46, 855-881. https://doi.org/10.1007/s12272-023-01473-y
|
[11]
|
Corbet, C. and Feron, O. (2017) Emerging Roles of Lipid Metabolism in Cancer Progression. Current Opinion in Clinical Nutrition & Metabolic Care, 20, 254-260. https://doi.org/10.1097/mco.0000000000000381
|
[12]
|
Terry, A.R. and Hay, N. (2024) Emerging Targets in Lipid Metabolism for Cancer Therapy. Trends in Pharmacological Sciences, 45, 537-551. https://doi.org/10.1016/j.tips.2024.04.007
|
[13]
|
Huang, B., Song, B. and Xu, C. (2020) Cholesterol Metabolism in Cancer: Mechanisms and Therapeutic Opportunities. Nature Metabolism, 2, 132-141. https://doi.org/10.1038/s42255-020-0174-0
|
[14]
|
Betsholtz, C. (2015) Lipid Transport and Human Brain Development. Nature Genetics, 47, 699-701. https://doi.org/10.1038/ng.3348
|
[15]
|
Zhang, J., Liu, B., Xu, C., Ji, C., Yin, A., Liu, Y., et al. (2023) Cholesterol Homeostasis Confers Glioma Malignancy Triggered by hnRNPA2b1-Dependent Regulation of SREBP2 and LDLR. Neuro-Oncology, 26, 684-700. https://doi.org/10.1093/neuonc/noad233
|
[16]
|
Ng, M.Y.W., Charsou, C., Lapao, A., Singh, S., Trachsel-Moncho, L., Schultz, S.W., et al. (2022) The Cholesterol Transport Protein GRAMD1C Regulates Autophagy Initiation and Mitochondrial Bioenergetics. Nature Communications, 13, Article No. 6283. https://doi.org/10.1038/s41467-022-33933-2
|
[17]
|
Takahashi, K., Kimura, G., Endo, Y., Akatsuka, J., Hayashi, T., Toyama, Y., et al. (2019) Urothelial Carcinoma of the Bladder, Lipid Cell Variant: Case Report and Literature Review. Journal of Nippon Medical School, 86, 349-351. https://doi.org/10.1272/jnms.jnms.2019_86-602
|
[18]
|
Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Li, J., et al. (2023) Functional Significance of Cholesterol Metabolism in Cancer: From Threat to Treatment. Experimental & Molecular Medicine, 55, 1982-1995. https://doi.org/10.1038/s12276-023-01079-w
|
[19]
|
Saad, E.E., Michel, R. and Borahay, M.A. (2024) Cholesterol and Immune Microenvironment: Path towards Tumorigenesis. Current Nutrition Reports, 13, 557-565. https://doi.org/10.1007/s13668-024-00542-y
|
[20]
|
Lu, J., Chen, S., Bai, X., Liao, M., Qiu, Y., Zheng, L., et al. (2023) Targeting Cholesterol Metabolism in Cancer: From Molecular Mechanisms to Therapeutic Implications. Biochemical Pharmacology, 218, Article ID: 115907. https://doi.org/10.1016/j.bcp.2023.115907
|
[21]
|
Ma, Q., Jiang, H., Ma, L., Zhao, G., Xu, Q., Guo, D., et al. (2023) The Moonlighting Function of Glycolytic Enzyme Enolase-1 Promotes Choline Phospholipid Metabolism and Tumor Cell Proliferation. Proceedings of the National Academy of Sciences of the United States of America, 120, e2209435120. https://doi.org/10.1073/pnas.2209435120
|
[22]
|
Koch, K., Hartmann, R., Schröter, F., Suwala, A.K., Maciaczyk, D., Krüger, A.C., et al. (2016) Reciprocal Regulation of the Cholinic Phenotype and Epithelial-Mesenchymal Transition in Glioblastoma Cells. Oncotarget, 7, 73414-73431. https://doi.org/10.18632/oncotarget.12337
|
[23]
|
Zhu, R., Yang, Y., Shao, F., Wang, J., Gao, Y., He, J., et al. (2022) Choline Kinase α2 Promotes Lipid Droplet Lipolysis in Non-Small-Cell Lung Carcinoma. Frontiers in Oncology, 12, Article 848483. https://doi.org/10.3389/fonc.2022.848483
|
[24]
|
Li, Z., Tan, Y., Li, X., Quan, J., Bode, A.M., Cao, Y., et al. (2022) DHRS2 Inhibits Cell Growth and Metastasis in Ovarian Cancer by Downregulation of CHKα to Disrupt Choline Metabolism. Cell Death & Disease, 13, Article No. 845. https://doi.org/10.1038/s41419-022-05291-w
|
[25]
|
Miao, Y., Wang, J., Hao, S., Deng, Y., Zhang, Z., Jin, Z., et al. (2023) The Inhibition of Aurora a Kinase Regulates Phospholipid Remodeling by Upregulating LPCAT1 in Glioblastoma. Neoplasma, 70, 260-271. https://doi.org/10.4149/neo_2023_221126n1140
|
[26]
|
Saito, R.D.F., Andrade, L.N.D.S., Bustos, S.O. and Chammas, R. (2022) Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk between Cancer Cells and Immune Cells. Frontiers in Immunology, 13, Article 768606. https://doi.org/10.3389/fimmu.2022.768606
|
[27]
|
Philipsen, M.H., Hansson, E., Manaprasertsak, A., Lange, S., Jennische, E., Carén, H., et al. (2023) Distinct Cholesterol Localization in Glioblastoma Multiforme Revealed by Mass Spectrometry Imaging. ACS Chemical Neuroscience, 14, 1602-1609. https://doi.org/10.1021/acschemneuro.2c00776
|
[28]
|
Mercurio, L., Cecchetti, S., Ricci, A., Pacella, A., Cigliana, G., Bozzuto, G., et al. (2017) Phosphatidylcholine-Specific Phospholipase C Inhibition Down-Regulates CXCR4 Expression and Interferes with Proliferation, Invasion and Glycolysis in Glioma Cells. PLOS ONE, 12, e0176108. https://doi.org/10.1371/journal.pone.0176108
|
[29]
|
Kuwata, H. and Hara, S. (2019) Role of Acyl-Coa Synthetase ACSL4 in Arachidonic Acid Metabolism. Prostaglandins & Other Lipid Mediators, 144, Article ID: 106363. https://doi.org/10.1016/j.prostaglandins.2019.106363
|
[30]
|
Watkins, P.A. and Ellis, J.M. (2012) Peroxisomal Acyl-Coa Synthetases. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822, 1411-1420. https://doi.org/10.1016/j.bbadis.2012.02.010
|
[31]
|
Sun, P., Xia, S., Lal, B., Shi, X., Yang, K.S., Watkins, P.A., et al. (2014) Lipid Metabolism Enzyme ACSVL3 Supports Glioblastoma Stem Cell Maintenance and Tumorigenicity. BMC Cancer, 14, Article No. 401. https://doi.org/10.1186/1471-2407-14-401
|