学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 13 No. 11 (November 2024)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
一类 2-树的双变量匹配多项式
The Bivariate Matching Polynomial of a Class of 2-Tree
DOI:
10.12677/AAM.2024.1311482
,
PDF
,
,
,
被引量
作者:
韩军
:绍兴文理学院数理信息学院,浙江 绍兴
关键词:
2-树
;
匹配多项式
;
匹配矩阵
;
Hosoya指数
;
2-Tree
;
Matching Polynomial
;
Matching Matrix
;
Hosoya Index
摘要:
图的单变量匹配多项式是图的匹配生成函数的等价形式之一,Farrell引入的图的双变量匹配多项式是图的单变量匹配多项式的推广。本文研究了一类2-树的双变量匹配多项式,利用匹配矩阵行列式的一种特殊展开形式得到该类2-树的双变量匹配多项式的显示表达式,进一步,获得了相应的Hosoya指数。
Abstract:
The univariate matching polynomial of a graph is one of the equivalent forms of the graph matching generating function. The bivariate matching polynomial of a graph introduced by Farrell is a generalization of the univariate matching polynomial of a graph. This paper studies the bivariate matching polynomial of a class of 2-trees. By using a special expansion form of the determinant of the matching matrix, the explicit expression of the bivariate matching polynomial of this class of 2-trees is obtained. Further, the corresponding Hosoya index is obtained.
文章引用:
韩军. 一类 2-树的双变量匹配多项式[J]. 应用数学进展, 2024, 13(11): 5001-5008.
https://doi.org/10.12677/AAM.2024.1311482
参考文献
[1]
Farrell, E.J. and Wahid, S.A. (1986) Matching Polynomials: A Matrix Approach and Its Applications. Journal of the Franklin Institute, 322, 13-21.
https://doi.org/10.1016/0016-0032(86)90072-4
[2]
Heilmann, O.J. and Lieb, E.H. (1972) Theory of Monomer-Dimer Systems. Communications in Mathematical Physics, 25, 190-232.
[3]
Hosoya, H. (1971) Topological Index. A Newly Proposed Quantity Characterizing the Topolog- ical Nature of Structural Isomers of Saturated Hydrocarbons. Bulletin of the Chemical Society of Japan, 44, 2332-2339.
https://doi.org/10.1246/bcsj.44.2332
[4]
Harary, F. and Palmer, E.M. (1968) On acyclic simplicial complexes. Mathematika, 15, 115- 122.
https://doi.org/10.1112/s002557930000245x
[5]
Arnborg, S. and Proskurowski, A. (1986) Characterization and Recognition of Partial 3-Trees. SIAM Journal on Algebraic Discrete Methods, 7, 305-314.
https://doi.org/10.1137/0607033
[6]
Farrell, E.J. (1979) An Introduction to Matching Polynomials. Journal of Combinatorial The- ory, Series B, 27, 75-86.
https://doi.org/10.1016/0095-8956(79)90070-4
[7]
Vein, R. and Dale, P. (2006) Determinants and Their Applications in Mathematical Physics. Springer.
[8]
Zhang, F.Z. (2006) The Schur Complement and Its Applications. Springer.
投稿
为你推荐
友情链接
科研出版社
开放图书馆