关于C4对扫帚图和双星图的二部Ramsey数
Bipartite Ramsey Numbers for C4 versus Brooms and Bistars
摘要: 给定简单二部图G
1,G
2,二部Ramsey数BR(G
1G
2)表示最小的正整数N,使得对完全二部图K
N,N的任意生成子图G,要么G包含G
1,要么
G包含G
2,其中
G为G关于K
N,N的补图。本文主要研究了C
4对扫帚图B
k,m以及双星图B(
n,m)这两类特殊类型的树的二部Ramsey数。
Abstract: For simple bipartite graphs G1, G2, the bipartite Ramsey number BR(G1, G2) is the smallest integer N such that given any spanning subgraph G of the complete bipartite graph KN,N , either G contains a copy of G1, or there exists a copy of G2 in G, where
G is the complement of G relative to KN,N . This article mainly studies the bipartite Ramsey numbers for C4 versus two special types of trees, broom and bistar.
参考文献
[1]
|
Faudree, R.J. and Schelp, R.H. (1975) Path-path Ramsey-Type Numbers for the Complete Bipartite Graph. Journal of Combinatorial Theory, Series B, 19, 161-173. https://doi.org/10.1016/0095-8956(75)90081-7
|
[2]
|
Gya´rf´as, A. and Lehel, J. (1973) A Ramsey-Type Problem in Directed and Bipartite Graphs. Periodica Mathematica Hungarica, 3, 299-304. https://doi.org/10.1007/bf02018597
|
[3]
|
Burr, S., Erdo¨s, P., Faudree, R.J., Rousseau, C.C. and Schelp, R.H. (1988) Some Complete Bi- partite Graph—Tree Ramsey Numbers. In: Annals of Discrete Mathematics, Vol. 41, Elsevier, 79-89. https://doi.org/10.1016/s0167-5060(08)70452-7
|
[4]
|
Carnielli, W.A. and Carmelo, E.L.M. (2000) K2,2 − K1,n and K2,n − K2,n bipartite Ramsey numbers. Discrete Mathematics, 223, 83-92. https://doi.org/10.1016/s0012-365x(00)00041-8
|
[5]
|
Rowshan, Y. and Gholami, M. (2022) Multicolor Bipartite Ramsey Numbers for Paths, Cycles, and Stripes. Computational and Applied Mathematics, 42, Article No. 25. https://doi.org/10.1007/s40314-022-02166-w
|
[6]
|
Reiman, I. (1958) U¨ ber ein Problem von K. Zarankiewicz. Acta Mathematica Academiae Sci- entiarum Hungaricae, 9, 269-273. https://doi.org/10.1007/bf02020254
|
[7]
|
Hatala, I., H´eger, T. and Mattheus, S. (2021) New Values for the Bipartite Ramsey Number of the Four-Cycle versus Stars. Discrete Mathematics, 344, Article 112320. https://doi.org/10.1016/j.disc.2021.112320
|