基于斜率限制器下求解 二维时间分数阶 Burgers 方程的 多重网格法
A Multi-Grid Method for SolvingTwo-Dimensional Temporal Fractional Burgers Equations Based on Slope Limiter
DOI: 10.12677/AAM.2024.1312503, PDF,   
作者: 李林娜:长沙理工大学,数学与统计学院,湖南 长沙
关键词: 二维时间分数阶 Burgers 方程多重网格法Two-Dimensional Time Fractional Burgers Equations Multigrid Method
摘要: 本文研究求解二维时间分数阶 Burgers 方程的多重网格法:在离散过程中,我们采用 L1差分格 式离散时间分数阶导数,对流项运用 Lax-Friedrichs 通量近似计算。实验结果表明该方法可以很 好地模拟间断。
Abstract: In this paper, we study the multi-grid method for solving the two-dimensional frac- tional Burgers equation in time: In the discretization process, we use the discretized fractional derivative of time in the L1 difference format, and the Lax-Friedrichs flux approximation is used for the convection term. Experimental results show that the proposed method can simulate discontinuities well.
文章引用:李林娜. 基于斜率限制器下求解 二维时间分数阶 Burgers 方程的 多重网格法[J]. 应用数学进展, 2024, 13(12): 5217-5224. https://doi.org/10.12677/AAM.2024.1312503

参考文献

[1] Ahmad, H., Khan, T.A. and Cesarano, C. (2019) Numerical Solutions of Coupled Burgers’ Equations. Axioms, 8, Article 119.
https://doi.org/10.3390/axioms8040119
[2] Esen, A. and Tasbozan, O. (2015) Numerical Solution of Time Fractional Burgers Equation. Acta Universitatis Sapientiae, Mathematica, 7, 167-185.
https://doi.org/10.1515/ausm-2015-0011
[3] Esen, A. and Tasbozan, O. (2015) Numerical Solution of Time Fractional Burgers Equation by Cubic B-Spline Finite Elements. Mediterranean Journal of Mathematics, 13, 1325-1337.
https://doi.org/10.1007/s00009-015-0555-x
[4] Abbaszadeh, M., Zaky, M.A., Hendy, A.S. and Dehghan, M. (2023) A Two-Grid Spectral Method to Study of Dynamics of Dense Discrete Systems Governed by Rosenau-Burgers’ E- quation. Applied Numerical Mathematics, 187, 262-276.
https://doi.org/10.1016/j.apnum.2023.02.014
[5] Sheng, Y. and Zhang, T. (2018) The Finite Volume Method for Two-Dimensional Burgers’ Equation. Personal and Ubiquitous Computing, 22, 1133-1139.
https://doi.org/10.1007/s00779-018-1143-4
[6] Duangpan, A., Boonklurb, R. and Treeyaprasert, T. (2019) Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations. Mathematics, 7, Article 1201.
https://doi.org/10.3390/math7121201
[7] Zhao, Z. and Li, H. (2023) Numerical Study of Two-Dimensional Burgers’ Equation by Using a Continuous Galerkin Method. Computers Mathematics with Applications, 149, 38-48.
https://doi.org/10.1016/j.camwa.2023.08.030
[8] Jiang, Y. and Bai, H. (2024) Multigrid Methods for Time Fractional Conservation Laws. Numerical Algorithms, 97, 1301-1322.
https://doi.org/10.1007/s11075-024-01750-x
[9] Kurganov, A., Petrova, G. and Popov, B. (2007) Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws. SIAM Journal on Scientific Com- puting, 29, 2381-2401.
https://doi.org/10.1137/040614189
[10] Hesthaven, J.S. (2018) Numerical Methods for Conservation Laws: From Analysis to Algo- rithms. Society for Industrial and Applied Mathematics, 199.
https://doi.org/10.1137/1.9781611975109