基于热湿传递二维模型的纺织材料孔隙率决定反问题
Inverse Problem of DeterminingPorosity in Textile Materials Based on a Two-Dimensional Heat and Moisture Transfer Model
摘要: 本文研究了基于织物的二维动态热湿传递模型的纺织材料孔隙率最优决定反问题。首先改进一个低温条件下织物的二维动态热湿传递模型,将其边界条件修正为第二类边界条件,使其更符合实际情况,采用有限差分方法求解该模型,接着基于该二维热湿传递模型,根据低温条件下服装保暖透湿性最佳提出反问题,利用透湿指数建立反问题数学模型,并用粒子群算法进行计算。最后给出数值实例,将粒子群算法计算结果与遍历算法结果进行比较,说明算法的有效性。
Abstract: This paper explores the inverse problem of optimally determining the porosity of tex-tile materials based on a two-dimensional dynamic heat and moisture transfer model tailored for fabrics. Initially, an existing two-dimensional dynamic heat and moisture transfer model for fabrics under low-temperature conditions is refined by adjusting its boundary conditions to the second-type boundary conditions, enhancing its realism. The finite difference method is utilized to solve this refined model. Furthermore, based on this two-dimensional heat and moisture transfer model, an inverse problem is formulated with the aim of optimizing the thermal insulation and moisture perme- ability of clothing under low-temperature conditions. A mathematical model for this inverse problem is constructed using the moisture permeability index, and is solved through the application of the Particle Swarm Optimization (PSO) algorithm. Lastly, numerical examples are presented, comparing the results obtained from the PSO al- gorithm with those derived from the exhaustive search algorithm, thereby illustrating the effectiveness of the proposed algorithm.
文章引用:黄涛玺. 基于热湿传递二维模型的纺织材料孔隙率决定反问题[J]. 理论数学, 2024, 14(12): 138-154. https://doi.org/10.12677/PM.2024.1412415

参考文献

[1] Henry, P.S.H. (1939) Diffusion in Absorbing Media. Proceedings of the Royal Society of London. Series A, 171, 215-241.
[2] Henry, P.S.H. (1948) The Diffusion of Moisture and Heat through Textiles. Discussions of the Faraday Society, 3, 243-257.
https://doi.org/10.1039/df9480300243
[3] Nishimura, T. and Matsuo, T. (2000) Numerical Simulation of Moisture Transmission through a Fiber Assembly. Textile Research Journal, 70, 103-107.
https://doi.org/10.1177/004051750007000203
[4] Luo, X. and Xu, Q. (2006) A New Numerical Implementation on 2D Heat and Moisture Transfer through Fabric. Applied Mathematics and Computation, 174, 1135-1150.
https://doi.org/10.1016/j.amc.2005.06.010
[5] Xu, Q. and Luo, X. (2006) Dynamic Thermal Comfort Numerical Simulation Model on 3D Garment CAD. Applied Mathematics and Computation, 182, 106-118.
https://doi.org/10.1016/j.amc.2006.03.042
[6] Hang, X.D., Sun, W. and Ye, C. (2012) Finite Volume Solution of Heat and Moisture Transfer through Three-Dimensional Textile Materials. Computers & Fluids, 57, 25-39.
https://doi.org/10.1016/j.comp uid.2011.11.010
[7] Lai, D. and Chen, Q. (2016) A Two-Dimensional Model for Calculating Heat Transfer in the Human Body in a Transient and Non-Uniform Thermal Environment. Energy and Buildings, 118, 114-122.
https://doi.org/10.1016/j.enbuild.2016.02.051
[8] Jia, N., Jia, X., An, H., Li, J. and Wang, R. (2019) A 3D Heat and Moisture Transfer Model with Radiation in Clothing. Physica A: Statistical Mechanics and its Applications, 517, 440- 451.
https://doi.org/10.1016/j.physa.2018.11.022
[9] Choudhary, B., Udayraj, Wang, F., Ke, Y. and Yang, J. (2020) Development and Experi- mental Validation of a 3D Numerical Model Based on CFD of the Human Torso Wearing Air Ventilation Clothing. International Journal of Heat and Mass Transfer, 147, Article 118973.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118973
[10] Shen, H., An, Y., Zhang, H., Wang, F., He, Y., Wang, J., et al. (2021) 3D Numerical In- vestigation of the Heat and Flow Transfer through Cold Protective Clothing Based on CFD. International Journal of Heat and Mass Transfer, 175, Article 121305.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121305
[11] Joshi, A., Wang, F., Kang, Z., Yang, B. and Zhao, D. (2022) A Three-Dimensional Thermoreg- ulatory Model for Predicting Human Thermophysiological Responses in Various Thermal En- vironments. Building and Environment, 207, Article 108506.
https://doi.org/10.1016/j.buildenv.2021.108506
[12] Wang, H., Li, J., Liu, Z., Yang, Y. and Seyam, A.M. (2024) Three-Dimensional Simulation of Heat and Moisture Transfer in Woven Fabric Structures. Textile Research Journal, 94, 2232-2252.
https://doi.org/10.1177/00405175241245913
[13] Du, N., Fan, J. and Wu, H. (2008) Optimum Porosity of Fibrous Porous Materials for Thermal Insulation. Fibers and Polymers, 9, 27-33.
https://doi.org/10.1007/s12221-008-0005-5
[14] Du, N., Fan, J., Wu, H. and Sun, W. (2009) Optimal Porosity Distribution of Fibrous Insula- tion. International Journal of Heat and Mass Transfer, 52, 4350-4357.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.067
[15] 徐定华,陈远波,程建新. 低温环境下纺织材料类型设计反问题[J].纺织学报,2011,32(9):24-28.
[16] 徐定华,文雷. 基于动态热湿传递的纺织材料孔隙率决定的反问题[J].数学年刊A辑(中文版), 2014,35(2):129-144.
[17] Ge, M., Yu, Y. and Xu, D. (2016) Textile Porosity Determination Based on a Nonlinear Heat and Moisture Transfer Model. Applicable Analysis, 96, 1681-1697.
https://doi.org/10.1080/00036811.2016.1262948
[18] Xu, D., He, Y., Yu, Y. and Zhang, Q. (2018) Multiple Parameter Determination in Tex- tile Material Design: A Bayesian Inference Approach Based on Simulation. Mathematics and Computers in Simulation, 151, 1-14.
https://doi.org/10.1016/j.matcom.2018.04.001
[19] 朱佳佳. 低温条件下纺织材料热湿传递模型的有限体积法及其在参数设计反问题中的应用[D]:[硕士学位论文]. 杭州:浙江理工大学, 2021.
[20] Xu, D. and Li, T. (2021) Mathematical Modeling and Inverse Problem Approaches for Func- tional Clothing Design Based on Thermal Mechanism. In: Cheng, J., Dinghua, X., Saeki, O. and Shirai, T., Eds., Mathematics for Industry, Springer Singapore, 67-92.
https://doi.org/10.1007/978-981-16-5576-0 4
[21] 闵涛,韩莹莹. 二维热传导方程初始条件反问题的数值求解[J]. 数学杂志,2022.42(6):513-522.
[22] 王艺融. 两类防护服热湿传递建模与参数决定反问题[D]:[硕士学位论文]. 杭州: 浙江理工大学, 2023.
[23] Eberhart, R. and Kennedy, J. (1995) A New Optimizer Using Particle Swarm Theory. Proceed- ings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.
https://doi.org/10.1109/MHS.1995.494215